Skip to main content
Log in

Cadmium-induced alterations of the structural features of pectins in flax hypocotyl

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In the course of our studies on the putative role of pectins in the control of cell growth, we have investigated the effect of cadmium on their composition, remodelling and distribution within the epidermis and fibre tissues of flax hypocotyl (Linum usitatissimum L.). Cadmium-stressed seedlings showed a significant inhibition of growth whereas the hypocotyl volume did not significantly change, due to the swelling of most tissues. The structural alterations consisted of significant increase of the thickness of all cell walls and the marked collapse of the sub-epidermal layer. The pectic epitopes recognized by the anti-PGA/RGI and JIM5 antibodies increased in the outer parts of the epidermis (external tangential wall and junctions) and fibres (primary wall and junctions). Concomitantly, there was a remarkable decrease of JIM7 antibody labelling and consequently an increase of the ratio JIM5/JIM7. Conversely, the ratio JIM7/JIM5 increased in the wall domains closest to the plasmalemma, which would expel the cadmium ions from the cytoplasm. The hydrolysis of cell walls revealed a cadmium-induced increase of uronic acid in the pectic matrix. Sequential extractions showed a remodelling of both homogalacturonan and rhamnogalacturonan I. In fractions enriched in primary walls, the main part of the pectins became cross-linked and could be extracted only with alkali. In fractions enriched in secondary walls, the homogalacturonan moieties were found more abundantly in the calcium-chelator extract while the rhamnogacturonan level increased in the boiling water extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ab:

Antibody

DME:

Degree of methylesterification

EB, EC and ED:

Sequential series of extracts with boiling water, calcium chelator and alkali, respectively

ETW:

External tangential cell wall

GalA:

Galacturonic acid

HGA:

Homogalacturonan

mAb:

Monoclonal antibody

PF:

Fraction enriched in primary cell wall

PME:

Pectinmethylesterase

RG:

Rhamnogalacturonan

SF:

Fraction enriched in secondary cell wall

TFA:

Trifluoroacetic acid

References

  • Albersheim P, Darvill AG, O’Neill MA, Schols HA, Voragen AGJ (1996) An hypothesis: the same six polysaccharides are components of the primary cell walls of all higher plants. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Elsevier, Amsterdam, pp 47–55

    Google Scholar 

  • Andème-Onzighi C, Girault R, His I, Morvan C, Driouich A (2000) Immunocytochemical characterization of early-developing flax fiber cell walls. Protoplasma 213:235–245

    Article  Google Scholar 

  • Angelova V, Ivanova R, Delibaltova V, Ivanov K (2004) Bioaccumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind Crops Prod 19:197–205

    Article  CAS  Google Scholar 

  • Barceló J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    Google Scholar 

  • Barceló J, Poschenrieder C, Andreu L, Gunse B (1986) Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender). I. Effects of cadmium on water potential, relative water content and cell wall elasticity. J Plant Physiol 125:17–25

    Google Scholar 

  • Barceló J, Vázquez MD, Poschenrieder C (1988) Cadmium-induced structural and ultrastructural changes in the vascular system of bush bean stems. Bot Acta 101:254–261

    Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. J Plant Physiol 17:21–34

    CAS  Google Scholar 

  • Blumenkrantz MP, Asboe-Hansen G (1973) A new method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    Article  PubMed  CAS  Google Scholar 

  • Boussama N, Ouariti O, Suzuki A, Ghorbel MH (1999) Cd-stress on nitrogen assimilation. J Plant Physiol 155:310– 317

    CAS  Google Scholar 

  • Burel C, Berthe T, Mery J-C, Morvan C, Balangé AP (1994) Isoelectric-focusing analysis of peroxidases in flax seedling hypocotyls grown in different light conditions. Plant Physiol Biochem 32:853– 860

    CAS  Google Scholar 

  • Clausen MH, Willats WGT, Knox JP (2003) Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr Res 338:1797–1800

    Article  PubMed  CAS  Google Scholar 

  • Costa G, Morel J-L (1994) Water relations, gas exchange and amino acid content in Cd- treated lettuce. Plant Physiol Biochem 32:561– 570

    CAS  Google Scholar 

  • Demarty M, Morvan C, Thellier M (1984) Calcium and plant cell wall. Plant Cell Environ 7:441–448

    Article  CAS  Google Scholar 

  • Dubois M, Gille KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for the determination of sugars and related substances. Anal Chem 28:350– 356

    Article  CAS  Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    CAS  Google Scholar 

  • Gorshkova TA, Morvan C (2005) Secondary cell-wall assembly in flax phloem fibres: role of galactans. Planta 223:149–158

    Article  PubMed  CAS  Google Scholar 

  • Gorshkova TA, Chemikosova SB, Salnikov VV, Pavlencheva NV, Gurjanov OP, Stolle-Smits T, van Dam JEG (2004) Occurrence of cell-specific galactan is coinciding with bast fibre developmental transition in flax. Ind Crop Prod 19:217–224

    Article  CAS  Google Scholar 

  • Goubet F, Bourlard T, Girault R, Alexandre C, Vandevelde MC, Morvan C (1995) Structural features of galactans from flax fibres. Carbohydr Polym 27:221–227

    Article  CAS  Google Scholar 

  • Gussarson M, Asp H, Adalsteinsson S, Jenén P (1996) Enhancement of cadmium effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulphoximine (BSO). J Exp Bot 47:211–215

    Article  Google Scholar 

  • Heumann HG (2002) Ultrastructural localization of zinc in zinc-tolerant Armeria maritima ssp. Halleri by autometallography. J Plant Physiol 159:191–203

    Article  CAS  Google Scholar 

  • His I, Driouich A, Jauneau A (1997) Distribution of cell wall matrix polysaccharides in the epidermis of flax hypocotyls seedlings: calcium induced-acidification of pectins. Plant Physiol Biochem 35:631–644

    CAS  Google Scholar 

  • Jarvis MC, Briggs SPH, Knox JP (2003) Intercellular adhesion and cell separation in plants. Plant Cell Environ 26:977–989

    Article  Google Scholar 

  • Jauneau A, Cabin-Flaman A, Morvan C, Pariot C, Ripoll C, Thellier M (1994) Polysaccharides distribution in the cellular junctions of immature fibre cells of flax seedlings. Histochem J 26:226– 232

    PubMed  CAS  Google Scholar 

  • Jauneau A, Quentin M, Driouich A (1997) Micro-heterogeneity of pectins and calcium distribution in the epidermal and cortical parenchyma cell walls of flax hypocotyl. Protoplasma 198:9–19

    Article  CAS  Google Scholar 

  • Khan DH, Dukett JG, Frankland B, Kirkham JB (1984) A X-ray microanalytical study of the distribution of cadmium in roots of Zea mays L. J Plant Physiol 115:19–28

    CAS  Google Scholar 

  • Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification in spacially regulated both within cell walls and between developing tissues of root apices. Planta 181:512–521

    Article  CAS  Google Scholar 

  • Konno H, Nakato T, Nakashima S, Katoh K (2005) Lygodium japonicum fern accumulates copper in the cell wall pectin. J Exp Bot 56:1923–1931

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Kottke I (2004) Subcellular localization of cadmium in the root cells of Allium cepa by electron energy loss spectroscopy and cytochemistry. J Biosciences 29:329–335

    Google Scholar 

  • Lynch MA, Staehelin LA (1992) Domain-specific and cell type-specific localization of two types of cell wall matrix polysaccharides in the clover root tip. J Cell Biol 118:467–479

    Article  PubMed  CAS  Google Scholar 

  • Marienfeld S, Lehmann H, Stelzer R (1995) Ultrastructural investigation and EDX-analyses of Al-treated oat (Avena sativa) roots. Plant Soil 171:167–173

    Article  CAS  Google Scholar 

  • Marry M, Roberts K, Jopson SJ, Huxham IM, Jarvis MC, Corsar J, Robertson E, McCann MC (2006) Cell–cell adhesion in fresh sugar-beet root parenchyma requires both pectin esters and calcium cross-links. Physiol Plant 126:243–256

    Article  CAS  Google Scholar 

  • McCluskey JG, Allison MJ, Duncan HJ, Jarvis MC (1984) Isolation of anatomically defined cell walls from fodder kale, and their contributions to determining the in vitro cellulase digestibility of the whole plant. J Agric Sci 103:347–352

    Article  Google Scholar 

  • McNeil M, Darvill AG, Albersheim P (1980) The structure of plant cell walls. X. Rhamnogalacturonan I, a structural complex pectic polysaccharide in the walls of suspension-cultured sycamore cells. Plant Physiol 66:1128–1134

    PubMed  CAS  Google Scholar 

  • Mooney C, Stolle-Smits T, Schols H, de Jong E (2001) Analysis of retted and non retted flax fibres by chemical and enzymatic means. J Biotechnol 89:205– 216

    Article  PubMed  CAS  Google Scholar 

  • Moore PJ, Darvill AG, Albersheim P, Staehelin LA (1986) Immunogold localization of xyloglucan and rhamnogalacturonan I in the cell wall of suspension-cultured sycamore cells. Plant Physiol 82:787–794

    PubMed  CAS  Google Scholar 

  • Morvan C, Abdul- Hafez AM, Jauneau A, Thoiron B, Demarty M (1991) Incorporation of D-[U- 14C] glucose in the cell wall of Linum plantlets during the first steps of growth. Plant Cell Physiol 32:609–621

    CAS  Google Scholar 

  • Morvan O, Quentin M, Jauneau A, Mareck A, Morvan C (1998) Immunogold localization of pectin methylesterases in the cortical tissues of flax hypocotyl. Protoplasma 202:175–184

    Article  CAS  Google Scholar 

  • Mukherjee A, Sharma A, Talukdeer G (1984) Effects of cadmium on cellular systems in higher organisms. Nucleus 27:121–139

    CAS  Google Scholar 

  • Neumann D, zur Nieden U, Lichtenberger O, Leopold I (1995) How does Armeria maritima tolerate high heavy metal concentration? J Plant Physiol 146:704–717

    CAS  Google Scholar 

  • Obata H, Umebayashi M (1997) Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium. J Plant Nutr 20:97–105

    Article  CAS  Google Scholar 

  • O’Neill MA, Elberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294:846–849

    Article  PubMed  CAS  Google Scholar 

  • Parker CC, Parker ML, Smith AC, Waldron KW (2001) Pectin distribution at the surface of potato parenchyma cells in relation to cell-cell adhesion. J Agric food Chem 49:4364–4371

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case of organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:1–48

    Google Scholar 

  • Roland J-C, Vian B (1981) Use of purified endopolygalacturonase for a topochemical study of elongating cell walls at the ultrastructural level. J Cell Sci 48:333–343

    PubMed  CAS  Google Scholar 

  • Sanitá di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Vian B, Roland J-C (1991) Affinodetection of the sites of formation and of the further distribution of polygalacturonans and native cellulose in growing plant cells. Biol Cell 71:43–55

    Article  CAS  Google Scholar 

  • Vincken J-P, Schols HA, Oomen RJFJ, McCann MC, Ulvskov P, Voragen AGJ, Visser RGF (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789

    Article  PubMed  CAS  Google Scholar 

  • Voragen AGJ, Schols HA, Pilnik W (1986) Determination of the degree of methylation and acetylation of pectins by HPLC. Food Hydrocolloid 1:65–70

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank L. Chevalier for her assistance and help with microscopy, and Dr. F. Goubet (Cambridge University, UK) for the critical reading of the manuscript. We also thank The Research Ministry of Tunisia as well as Pr. W. Chaibi (University of Tunis, Tunisia) for the financial supports to O. Douchiche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Morvan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douchiche, O., Rihouey, C., Schaumann, A. et al. Cadmium-induced alterations of the structural features of pectins in flax hypocotyl. Planta 225, 1301–1312 (2007). https://doi.org/10.1007/s00425-006-0425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0425-7

Keywords

Navigation