Skip to main content
Log in

Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Ascorbate oxidase (AO, EC 1.10.3.3) is a member of the multicopper oxidases family. It catalyzes the oxidation of ascorbic acid (AA) to dehydroascorbic acid (DHA) via monodehydroascorbate (MDHA), with the concomitant reduction of molecular oxygen to water. In melon (Cucumis melo), ascorbate oxidase is encoded by a multigene family comprising at least four genes. Here, we present the detailed characterization of two melon AO genes, CmAO1 and CmAO4. Gene-specific expression studies of the AO gene family in melon revealed that only CmAO1 and CmAO4 are transcriptionally active and differentially regulated dependent on tissue, developmental stage and external stimuli. Transcripts of the CmAO1 gene are present in floral and fruit tissues, whereas CmAO4 mRNA preferentially accumulates in vegetative tissues. CmAO genes were not detected in melon seeds, but CmAO4 expression is activated upon germination. CmAO4 mRNA steady-state levels are also regulated in response to wounding and heat stress, by hormones (abscisic acid, salicylic acid and jasmonates), AA and copper. These findings suggest that AO gene expression is transcriptionally regulated during fruit development and in response to hormonal cues associated with the control of cell growth and the stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

AA:

l-Ascorbic acid

AO:

Ascorbate oxidase

DAP:

Days after hand-pollination

DAS:

Days after sowing

IAA:

Indole-3-acetic acid

NAA:

α-Naphthaleneacetic acid

References

  • Al-Madhoun A, Sanmartin M, Kanellis AK (2003) Expression of ascorbate oxidase isoenzymes in cucurbits and during development and ripening of melon fruit. Postharvest Biol Technol 27:137–146

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Arrigoni O, De Gara L, Tommasi F, Liso R (1992) Changes in the ascorbate system during seed development of Vicia faba L. Plant Physiol 99:235–238

    PubMed  CAS  Google Scholar 

  • Barnes JD, Zheng Y, Lyons TM (2002) Plant resistance to ozone: the role of ascorbate. In: Omasa K, Saji H, Youssefian S, Kondo N (eds) Air pollution and plant biotechnology, Springer, Berlin Heidelberg New York, pp 235–252

    Google Scholar 

  • Bewley JD, Black M (1983) Development, germination and growth. In: Bewley JD, Black M (eds) Physiology and biochemistry of seeds in relation to germination, vol 1. Springer, Berlin Heidelberg New York, pp 120–123

  • Brummell DA, Harpster MH, Dunsmuir P (1999) Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol Biol 39:161–169

    Article  PubMed  CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119

    Article  PubMed  CAS  Google Scholar 

  • D’Andrea G, Bouwstra JB, Kamerling JP, Vliegenthart JFG (1988) Primary structure of the xylose-containing N-linked carbohydrate moiety from ascorbic acid oxidase of Cucurbita pepo medullosa. Glycoconj J 5:151–157

    Article  CAS  Google Scholar 

  • De Tullio MC, Ciraci S, Liso R, Arrigoni O (2005) Ascorbic acid oxidase is dynamically regulated by light and oxygen. A tool for oxygen management in plants? J Plant Phys. DOI 10.1016/j.jplph.2005.09.016 (in press)

  • Diallinas G, Kanellis AK (1994) A phenylalanine ammonia-lyase gene from melon fruit: cDNA cloning, sequence and expression in response to development and wounding. Plant Mol Biol 26:437–479

    Article  Google Scholar 

  • Diallinas G, Pateraki I, Sanmartin M, Scossa A, Stilianou E, Panopoulos NJ, Kanellis AK (1997) Melon ascorbate oxidase: cloning of a multigene family, induction during fruit development and repression by wounding. Plant Mol Biol 34:759–770

    Article  PubMed  CAS  Google Scholar 

  • Dumville JC, Fry SC (2003) Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217:951–961

    Article  PubMed  CAS  Google Scholar 

  • Esaka M, Fujisawa K, Goto M, Kisu Y (1992) Regulation of ascorbate oxidase expression in pumpkin by auxin and copper. Plant Physiol 100:231–237

    PubMed  CAS  Google Scholar 

  • Fotopoulos V, Kanellis AK (2005) Altered stomatal movement and water loss in transgenic tobacco plants over-expressing ascorbate oxidase. In: 2nd Solanaceae Genome Workshop, Ischia, Italy, September 25–29, 2005

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Reyes JA, Alcain FJ, Caler JA, Serrano A, Cordoba F, Navas P (1995) Stimulation of onion root elongation by ascorbate and ascorbate free radical in Allium cepa L. Protoplasma 184:31–35

    Article  CAS  Google Scholar 

  • Graber JH, Cantor CR, Mohr SC, Smith TF (1999) In silico detection of control signals: mRNA 3′-end-processing sequences in diverse species. Proc Natl Acad Sci USA 96:14055–14060

    Article  PubMed  CAS  Google Scholar 

  • Horemans N, Asard H, Caubergs RJ (1994) The role of ascorbate free radical as an electron acceptor to cytochrome b-mediated trans-plasma membrane electron transport in higher plants. Plant Physiol 104:1455–1458

    PubMed  CAS  Google Scholar 

  • Ishiki Y, Oda A, Yaegashi Y, Orihara Y, Arai T, Hirabayashi T, Nakagawa H, Sato T (2000) Cloning of an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase gene (CMe-ACS2) from melon and the expression of ACS genes in etiolated melon seedlings and melon fruits. Plant Sci 159:173–181

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant 126:343–355

    Article  CAS  Google Scholar 

  • Kato N, Esaka M (1999) Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells. Physiol Plant 105:321–329

    Article  CAS  Google Scholar 

  • Kato N, Esaka M (2000) Expansion of transgenic tobacco protoplasts expressing pumpkin ascorbate oxidase is more rapid than that of wild-type protoplasts. Planta 210:1018–1022

    Article  PubMed  CAS  Google Scholar 

  • Kerk NM, Feldman LJ (1995) A biochemical model for the initiation and maintenance of the quiescent centre: implications for organization of root meristems. Development 121:2825–2833

    CAS  Google Scholar 

  • Lasserre E, Bouquin T, Hernandez JA, Bull J, Pech J-C, Balague C (1996) Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo). Mol Gen Genet 251:81–90

    PubMed  CAS  Google Scholar 

  • Lin LS, Varner JE (1991) Expression of ascorbic acid oxidase in zucchini squash (Cucurbita pepo L.). Plant Physiol 96:159–165

    Article  PubMed  CAS  Google Scholar 

  • Loewus FA (1980) l-Ascorbic acid: metabolism, biosynthesis, function. In: Preiss J (ed) The biochemistry of plants. carbohydrates: structure and function, vol 3. Academic, New York, pp 77–99

  • Messerschmidt A, Rossi A, Ladenstein R, Huber R, Bolognesi M, Gatti G, Marchesini A, Petruzzelli R, Finazzi-Agro A (1989) X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini. Analysis of the polypeptide fold and a model of the copper sites and ligands. J Mol Biol 206:513–529

    Article  PubMed  CAS  Google Scholar 

  • Moser O, Kanellis AK (1994) Ascorbate oxidase of Cucumis melo L. var. reticulates: purification, characterization and antibody production. J Exp Bot 45:717–724

    Article  CAS  Google Scholar 

  • Pallanca JE, Smirnoff N (1999) Ascorbic acid metabolism in pea seedlings. A comparison of d-glucosone, l-sorbosone, and l-galactone-1,4-lactone as ascorbate precursors. Plant Physiol 120:453–461

    Article  PubMed  CAS  Google Scholar 

  • Pallanca JE, Smirnoff N (2000) The control of ascorbic acid synthesis and turnover in pea seedlings. J Exp Bot 51:669–674

    Article  PubMed  CAS  Google Scholar 

  • Pateraki I, Sanmartin M, Kalamaki MS, Gerasopoulos D, Kanellis AK (2004) Molecular characterization and expression studies during melon fruit development and ripening of l-galactono-1,4-lactone dehydrogenase. J Exp Bot 55:1623–1633

    Article  PubMed  CAS  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951

    Article  PubMed  CAS  Google Scholar 

  • Pitari G, Chichiricco G, Marcozzi G, Rossi A, Maccarrone M, Avigliano L (1993) Expression of ascorbate oxidase in cultured green zucchini cells. Effects of copper and abscisic acid. Plant Physiol Biochem 31:593–598

    CAS  Google Scholar 

  • Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Curr Opin Plant Biol 6:379–389

    Article  PubMed  CAS  Google Scholar 

  • Pignocchi C, Fletcher JM, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641

    Article  PubMed  CAS  Google Scholar 

  • Pignocchi C, Kiddle G, Hernández I, Foster SJ, Asensi A, Taybi T, Barnes JD, Foyer CH (2006) Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcription leading to modified hormone signaling and orchestration of defence processes in tobacco. Plant Physiol 141:423–435

    Article  PubMed  CAS  Google Scholar 

  • Pratt HK (1971) Melons. In: Hulme AC (ed) Biochemistry of fruits and their products, vol 2. Academic, New York, pp 207–232

  • Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes JD, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    PubMed  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    PubMed  CAS  Google Scholar 

  • Smith CJS, Slater A, Grierson D (1986) Rapid appearance of an mRNA correlated with ethylene synthesis encoding a protein of molecular weight 35000. Planta 168:94–100

    Article  CAS  Google Scholar 

  • Tabata K, Oba K, Suzyki K, Esaka M (2001) Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for l-galactono-1,4-lactone dehydrogenase. Plant J 27:139–148

    Article  PubMed  CAS  Google Scholar 

  • Tabata K, Takaoka T, Esaka M (2002) Gene expression of ascorbic acid-related enzymes in tobacco. Phytochemistry 61:631–635

    Article  PubMed  CAS  Google Scholar 

  • Takahama U, Oniki T (1994) The association of ascorbate and ascorbate oxidase in the apoplast with IAA-enhanced elongation of epicotyls from Vigna angularis. Plant Cell Physiol 35:257–266

    CAS  Google Scholar 

  • Takahashi K, Fujino K, Kikuta Y, Koda Y (1994) Expansion of potato cells in response to jasmonic acid. Plant Sci 100:3–8

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Wadsworth GJ, Redinbaugh MG, Scandalios JG (1988) A procedure for the small-scale isolation of plant RNA suitable for RNA blot analysis. Anal Biochem 172:279–283

    Article  PubMed  CAS  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  PubMed  CAS  Google Scholar 

  • Yahyaoui FEL, Wongs-Aree C, Latché A, Hackett R, Grierson D, Pech JC (2002) Molecular and biochemical characteristics of a gene encoding an alcohol acyl-transferase involved in the generation of aroma volatile esters during melon ripening. Eur J Biochem 269:2359–2366

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Bhuiyan MNH, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot 56:1785–1796

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to J. Barnes, G. Diallinas and J. J. Sanchez-Serrano for their comments on the manuscript and A. Aransay for her help in constructing and commenting the phylogenetic studies. We thank J. C. Pech for CmAAT cDNA and C. Balague for CmACO cDNA (pMEL-1 plasmid). The work was partially supported by grants awarded to A. K. K. (EU-FAIR-CT-97-5021, EU-FAIR-CT-CT97-3161, GR-DIMITRA-NAGREF-95-V9), with some of the work conducted during M. S.’s tenure as a TMR fellow (EU-FAIR-CT-97-5021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos K. Kanellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanmartin, M., Pateraki, I., Chatzopoulou, F. et al. Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta 225, 873–885 (2007). https://doi.org/10.1007/s00425-006-0399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0399-5

Keywords

Navigation