Skip to main content

Advertisement

Log in

The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: comparative promoter activity of six TaLtp genes in transgenic rice

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plant non-specific lipid transfer proteins (nsLTPs) are encoded by a multigene family and support physiological functions, which remain unclear. We adapted an efficient ligation-mediated polymerase chain reaction (LM-PCR) procedure that enabled isolation of 22 novel Triticum aestivum nsLtp (TaLtp) genes encoding types 1 and 2 nsLTPs. A phylogenetic tree clustered the wheat nsLTPs into ten subfamilies comprising 1–7 members. We also studied the activity of four type 1 and two type 2 TaLtp gene promoters in transgenic rice using the β-Glucuronidase reporter gene. The activities of the six promoters displayed both overlapping and distinct features in rice. In vegetative organs, these promoters were active in leaves and root vascular tissues while no β-Glucuronidase (GUS) activity was detected in stems. In flowers, the GUS activity driven by the TaLtp7.2a, TaLtp9.1a, TaLtp9.2d, and TaLtp9.3e gene promoters was associated with vascular tissues in glumes and in the extremities of anther filaments whereas only the TaLtp9.4a gene promoter was active in anther epidermal cells. In developing grains, GUS activity and GUS immunolocalization data evidenced complex patterns of activity of the TaLtp7.1a, TaLtp9.2d, and TaLtp9.4a gene promoters in embryo scutellum and in the grain epicarp cell layer. In contrast, GUS activity driven by TaLtp7.2a, TaLtp9.1a, and TaLtp9.3e promoters was restricted to the vascular bundle of the embryo scutellum. This diversity of TaLtp gene promoter activity supports the hypothesis that the encoded TaLTPs possess distinct functions in planta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

dpa:

Day post-anthesis

EST:

Expressed sequence tag

GUS:

β-Glucuronidase

LM-PCR:

Ligation mediated PCR

MATAB:

Mixed alkyl trimethyl ammonium bromide

nsLTP:

Non-specific lipid transfer protein

nsLtp :

Non-specific lipid transfer protein gene

SAR:

Systemic acquired resistance

TaLtp :

Triticum aestivum non-specific lipid transfer protein gene

uidA :

β-Glucuronidase gene

References

  • Altenbach SB, Kothari KM (2004) Transcript profiles of genes expressed in endosperm tissue are altered by high temperature during wheat grain development. J Cereal Sci 40:115–126

    Article  CAS  Google Scholar 

  • Arondel V, Vergnolle C, Cantrel C, Kader J-C (2000) Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci 157:1–12

    Article  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Bommert P, Werr W (2001) The expression pattern of lipid transfer protein 2 (LTP2) gene indicates regionalisation in the proembryo and confirms the coleoptile to be in lineage with the scutellum. Maize News Lett 75:35–36

    Google Scholar 

  • Botton A, Begheldo M, Rasori A, Bonghi C, Tonutti P (2002) Differential expression of two lipid transfer protein genes in reproductive organs of peach (Prunus persica L. Batsch). Plant Sci 163:993–1000

    Article  CAS  Google Scholar 

  • Boutrot F, Guirao A, Alary R, Joudrier P, Gautier M-F (2005) Wheat non-specific lipid transfer protein genes display a complex pattern of expression in developing seeds. Biochim Biophys Acta; Gene Struct Exp 1730:114–125

    CAS  Google Scholar 

  • Buhot N, Gomés E, Milat M-L, Ponchet M, Marion D, Lequeu J, Delrot S, Coutos-Thévenot P, Blein J-P (2004) Modulation of the biological activity of a tobacco LTP1 by lipid complexation. Mol Biol Cell 15:5047–5052

    Article  PubMed  CAS  Google Scholar 

  • Buhtz A, Kolasa A, Arlt K, Walz C, Kehr J (2004) Xylem sap protein composition is conserved among different plant species. Planta 219:610–618

    Article  PubMed  CAS  Google Scholar 

  • Cameron KD, Moskal WA, Smart LB (2006a) A second member of the Nicotiana glauca lipid transfer protein gene family, NgLTP2, encodes a divergent and differentially expressed protein. Funct Plant Biol 33:141–152

    Article  CAS  Google Scholar 

  • Cameron KD, Teece MA, Smart LB (2006b) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183

    Article  CAS  Google Scholar 

  • Cammue BPA, Thevissen K, Hendriks M, Eggermont K, Goderis IJ, Proost P, Van Damme J, Osborn RW, Guerbette F, Kader J-C, Broekaert WF (1995) A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol 109:445–455

    Article  PubMed  CAS  Google Scholar 

  • Canevascini S, Caderas D, Mandel T, Fleming AJ, Dupuis I, Kuhlemeier C (1996) Tissue-specific expression and promoter analysis of the tobacco ltp1 gene. Plant Physiol 112:513–524

    Article  PubMed  CAS  Google Scholar 

  • Clark AM, Bohnert HJ (1999) Cell-specific expression of genes of the lipid transfer protein family from Arabidopsis thaliana. Plant Cell Physiol 40:69–76

    PubMed  CAS  Google Scholar 

  • Coutos-Thévenot P, Jouenne T, Maes O, Guerbette F, Grosbois M, Le Caer J-P, Boulay M, Deloire A, Kader J-C, Guern J (1993) Four 9-kDa proteins excreted by somatic embryos of grapevine are isoforms of lipid-transfer proteins. Eur J Biochem 217:885–889

    Article  PubMed  Google Scholar 

  • Dieryck W, Gautier M-F, Lullien V, Joudrier P (1992) Nucleotide sequence of a cDNA encoding a lipid transfer protein from wheat (Triticum durum Desf.). Plant Mol Biol 19:707–709

    Article  PubMed  CAS  Google Scholar 

  • Douliez J-P, Jégou S, Pato C, Larré C, Mollé D, Marion D (2001) Identification of a new form of lipid transfer protein (LTP1) in wheat seeds. J Agric Food Chem 49:1805–1808

    Article  PubMed  CAS  Google Scholar 

  • Dubreil L, Gaborit T, Bouchet B, Gallant DJ, Broekaert WF, Quillien L, Marion D (1998) Spatial and temporal distribution of the major isoforms of puroindolines (puroindoline-a and puroindoline-b) and nonspecific lipid transfer protein (ns-LTP1e1) of Triticum aestivum seeds. Relationships with their in vitro antifungal properties. Plant Sci 138:121–135

    Article  CAS  Google Scholar 

  • Eklund DM, Edqvist J (2003) Localization of nonspecific lipid transfer proteins correlate with programmed cell death responses during endosperm degradation in Euphorbia lagascae seedlings. Plant Physiol 132:1249–1259

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6a3. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, WA

  • Feschotte C, Swamy L, Wessler SR (2003) Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with Stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163:747–758

    PubMed  CAS  Google Scholar 

  • Fleming AJ, Mandel T, Hofmann S, Sterk P, de Vries SC, Kuhlemeier C (1992) Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. Plant J 2:855–862

    PubMed  CAS  Google Scholar 

  • Foster GD, Robinson SW, Blundell RP, Roberts MR, Hodge R, Draper J, Scott RJ (1992) A Brassica napus mRNA encoding a protein homologous to phospholipid transfer proteins, is expressed specifically in the tapetum and developing microspores. Plant Sci 84:187–192

    Article  CAS  Google Scholar 

  • Gaudet DA, Laroche A, Frick M, Huel R, Puchalski B (2003) Cold induced expression of plant defensin and lipid transfer protein transcripts in winter wheat. Physiol Plant 117:195–205

    Article  CAS  Google Scholar 

  • Guiderdoni E, Cordero MJ, Vignols F, García-Garrido JM, Lescot M, Tharreau D, Meynard D, Ferrière N, Notteghem J-L, Delseny M (2002) Inducibility by pathogen attack and developmental regulation of the rice Ltp1 gene. Plant Mol Biol 49:679–695

    Article  Google Scholar 

  • Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouze P, Brunak S (1996) Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res 24:3439–3452

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers S, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plant. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Horvath BM, Bachem CW, Trindade LM, Oortwijn MEP, Visser RGF (2002) Expression analysis of a family of nsLTP genes tissue specifically expressed throughout the plant and during potato tuber life cycle. Plant Physiol 129:1494–1506

    Article  PubMed  CAS  Google Scholar 

  • Hoshikawa K (1993) Anthesis, fertilization and development of caryopsis. In: Matsuo T, Hosikawa K (eds) Science of the rice plant. 1. Morphology. Food and Agriculture Policy Research Center, Tokyo, pp 339–376

    Google Scholar 

  • Ivashikina N, Deeken R, Ache P, Kranz E, Pommerrenig B, Sauer N, Hedrich R (2003) Isolation of AtSUC2 promoter-GFP-marked companion cells for patch-clamp studies and expression profiling. Plant J 36:931–945

    Article  PubMed  CAS  Google Scholar 

  • James VA, Avart C, Worland B, Snape JW, Vain P (2002) The relationship between homozygous and hemizygous transgene expression levels over generations in populations of transgenic rice plants. Theor Appl Genet 104:553–561

    Article  PubMed  CAS  Google Scholar 

  • Jang CS, Lee HJ, Chang SJ, Seo YW (2004) Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat (Triticum aestivum L.). Plant Sci 167:995–1001

    Article  CAS  Google Scholar 

  • Jang CS, Johnson JW, Seo YW (2005) Differential expression of TaLTP3 and TaCOMT1 induced by Hessian fly larval infestation in a wheat line possessing H21 resistance gene. Plant Sci 168:1319–1326

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • José-Estanyol M, Gomis-Rüth FX, Puigdomènech P (2004) The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem 42:355–365

    Article  PubMed  Google Scholar 

  • Jung HW, Kim W, Hwang BK (2003) Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant Cell Environ 26:915–928

    Article  PubMed  CAS  Google Scholar 

  • Kader J-C (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  PubMed  CAS  Google Scholar 

  • Kader J-C, Julienne M, Vergnolle C (1984) Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur J Biochem 139:411–416

    Article  PubMed  CAS  Google Scholar 

  • Lauga B, Charbonnel-Campaa L, Combes D (2000) Characterization of MZm3-3, a Zea mays tapetum-specific transcript. Plant Sci 157:65–75

    Article  PubMed  CAS  Google Scholar 

  • Lay FT, Brugliera F, Anderson MA (2003) Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol 131:1283–1293

    Article  PubMed  CAS  Google Scholar 

  • Li YC, Yang YC, Hsu JSF, Wu DJ, Wu HH, Tzen JTC (2005) Cloning and immunolocalization of an antifungal chitinase in jelly fig (Ficus awkeotsang) achenes. Phytochemistry 66:879–886

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Jiang H, Moore S, Watkins C, Jahn M (2006) Isolation and characterization of a lipid transfer protein expressed in ripening fruit of Capsicum chinense. Planta 223:672–683

    Article  PubMed  CAS  Google Scholar 

  • Lu ZX, Gaudet DA, Frick M, Puchalski B, Genswein B, Laroche A (2005) Identification and characterization of genes differentially expressed in the resistance reaction in wheat infected with Tilletia tritici, the common bunt pathogen. J Biochem Mol Biol 38:420–431

    PubMed  CAS  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403

    Article  PubMed  CAS  Google Scholar 

  • Marion D, Dubreil L, Douliez J-P (2003) Functionality of lipids and lipid-protein interactions in cereal-derived food products. Ol Corps Gras Li 10:47–56

    CAS  Google Scholar 

  • Moise JA, Han S, Gudynaite-Savitch L, Johnson DA, Miki BLA (2005) Seed coats: structure, development, composition, and biotechnology. In Vitro Cell Dev Biol; Plant 41:620–644

    Article  Google Scholar 

  • Molina A, García-Olmedo F (1993) Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. Plant J 4:983–991

    Article  PubMed  CAS  Google Scholar 

  • Monnet F-P (1990) Caractérisation d’une protéine de fixation de lipides du blé dur, purification, séquençage, ADN complémentaire: relations aux protéines végétales de transfert de lipides et aux inhibiteurs d’amylase/trypsine des céréales. PhD Dissertation, Université de Montpellier II, France

  • Monnet F-P, Dieryck W, Boutrot F, Joudrier P, Gautier M-F (2001) Purification, characterisation and cDNA cloning of a type 2 (7 kDa) lipid transfer protein from Triticum durum. Plant Sci 161:747–755

    Article  CAS  Google Scholar 

  • Neumann GM, Condron R, Thomas I, Polya GM (1994) Purification and sequencing of a family of wheat lipid transfer protein homologues phosphorylated by plant calcium-dependent protein kinase. Biochim Biophys Acta; Prot Struct Mol Enzymol 1209:183–190

    Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Petersen G, Seberg O (2000) Phylogenetic evidence for excision of Stowaway miniature inverted-repeat transposable elements in triticeae (Poaceae). Mol Biol Evol 17:1589–1596

    PubMed  CAS  Google Scholar 

  • Pyee J, Yu H, Kolattukudy PE (1994) Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch Biochem Biophys 311:460–468

    Article  PubMed  CAS  Google Scholar 

  • Sallaud C, Meynard D, Van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk PB, Rueb S, Delseny M, Guiderdoni E (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396–408

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088

    Article  PubMed  CAS  Google Scholar 

  • Sohal AK, Pallas JA, Jenkins GI (1999) The promoter of a Brassica napus lipid transfer protein gene is active in a range of tissues and stimulated by light and viral infection in transgenic Arabidopsis. Plant Mol Biol 41:75–87

    Article  PubMed  CAS  Google Scholar 

  • Sossountzov L, Ruiz-Avila L, Vignols F, Jolliot A, Arondel V, Tchang F, Grosbois M, Guerbette F, Miginiac E, Delseny M, Puigdomènech P, Kader J-C (1991) Spatial and temporal expression of a maize lipid transfer protein gene. Plant Cell 3:923–933

    Article  PubMed  CAS  Google Scholar 

  • Sterk P, Booij H, Schellekens GA, van Kammen A, de Vries SC (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3:907–921

    Article  PubMed  CAS  Google Scholar 

  • Sy D, Le Gravier Y, Goodfellow J, Vovelle F (2003) Protein stability and plasticity of the hydrophobic cavity in wheat ns-LTP. J Biomol Struct Dyn 21:15–30

    PubMed  CAS  Google Scholar 

  • Thoma S, Hecht U, Kippers A, Botella J, de Vries SC, Somerville C (1994) Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol 105:35–45

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • van Bel AJE, Gaupels F (2004) Pathogen-induced resistance and alarm signals in the phloem. Mol Plant Pathol 5:495–504

    Article  Google Scholar 

  • van Leeuwen W, Ruttink T, Borst-Vrenssen AW, van der Plas LH, van der Krol AR (2001) Characterization of position-induced spatial and temporal regulation of transgene promoter activity in plants. J Exp Bot 52:949–959

    Article  PubMed  Google Scholar 

  • Vrinten PL, Nakamura T, Kasha KJ (1999) Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley (Hordeum vulgare) L. Plant Mol Biol 41:455–463

    Article  PubMed  CAS  Google Scholar 

  • Ye ZH, Varner JE (1994) Expression of an auxin- and cytokinin-regulated gene in cambial region in Zinnia. Proc Natl Acad Sci USA 91:6539–6543

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Caroline Hartman for the wheat genomic library, Julie Petit for the CaMV35S::uidA construct, Jacques Escoute and Geneviève Conejero for helpful advice on histological analysis. We would also like to thank Emmanuelle Bourgeois for help in adapting the LM-PCR protocol to wheat. Freddy Boutrot was the recipient of a fellowship from the French Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche. The support of the Génopole LR for containment greenhouse infrastructures is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Françoise Gautier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boutrot, F., Meynard, D., Guiderdoni, E. et al. The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: comparative promoter activity of six TaLtp genes in transgenic rice. Planta 225, 843–862 (2007). https://doi.org/10.1007/s00425-006-0397-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0397-7

Keywords

Navigation