Skip to main content
Log in

Effect of LiCl on phosphoenolpyruvate carboxylase kinase and the phosphorylation of phosphoenolpyruvate carboxylase in leaf disks and leaves of Sorghum vulgare

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In the present work, the effect of LiCl on phosphoenolpyruvate carboxylase kinase (PEPCase-k), C4 phosphoenolpyruvate carboxylase (PEPCase: EC 4.1.1.31) and its phosphorylation process has been investigated in illuminated leaf disks and leaves of the C4 plant Sorghum vulgare. Although this salt induced severe damages to older leaves, it did not significantly alter the physiological parameters (photosynthesis, transpiration rate, intercellular CO2 concentration) of young leaves. An immunological approach was used to demonstrate that the PEPCase-k protein accumulated rapidly in illuminated leaf tissues, consistent with the increase in its catalytic activity. In vivo, LiCl was shown to strongly enhance the light effect on PEPCase-k protein content, this process being dependent on protein synthesis. In marked contrast, the salt was found to inhibit the PEPCase-k activity in reconstituted assays and to decrease the C4 PEPCase content and phosphorylation state in LiCl treated plants. Short-term (15 min) LiCl treatment increased IP3 levels, PPCK gene expression, and PEPCase-k accumulation. Extending the treatment (1 h) markedly decreased IP3 and PPCK gene expression, while PEPCase-k activity was kept high. The cytosolic protein synthesis inhibitor cycloheximide (CHX), which blocked the light-dependent up-regulation of the kinase in control plants, was found not to be active on this process in preilluminated, LiCl-treated leaves. This suggested that the salt causes the kinase turnover to be altered, presumably by decreasing degradation of the corresponding polypeptide. Taken together, these results establish PEPCase-k and PEPCase phosphorylation as lithium targets in higher plants and that this salt can provide a means to investigate further the organization and functioning of the cascade controlling the activity of both enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CHX:

Cycloheximide

PI-PLC:

Phosphoinositide-specific phospholipase C

IP3 :

Inositol 1,4,5-triphosphate

PEPCase:

Phosphoenolpyruvate carboxylase

PEPCase-k:

Phosphoenolpyruvate carboxylase kinase

References

  • Alvarez R, García-Mauriño S, Feria AB, Vidal J, Echevarría C (2003) A conserved 19-amino acid synthetic peptide from the carboxy terminus of phosphoenolpyruvate carboxylase inhibits the in vitro phosphorylation of the enzyme by the calcium-independent phosphoenolpyruvate carboxylase kinase. Plant Physiol 132:1097–1106

    Article  PubMed  CAS  Google Scholar 

  • Agetsuma M, Furumoto T, Yanagisawa S, Izui K (2005) The ubiquitin–proteasome pathway is involved in rapid degradation of phosphoenolpyruvate carboxylase kinase for C4 photosynthesis. Plant Cell Physiol 46:389–398

    Article  PubMed  CAS  Google Scholar 

  • Bakrim N, Brulfert J, Vidal J, Chollet R (2001) Phosphoenolpyruvate carboxylase kinase is controlled by a similar signalling cascade in CAM and C4 plants. Biochim Biophys Res Commun 286:1158–1162

    Article  CAS  Google Scholar 

  • Bakrim N, Nhiri M, Pierre JN, Vidal J (1998) Metabolite control of Sorghum C4 phosphoenolpyruavte carboxylase catalytic activity and phosphorylation state. Photosynthesis Res 58:153–162

    Article  CAS  Google Scholar 

  • Baur B, Dietz KF, Winter K (1992) Regulatory protein phosphorylation of phosphoenolpyruvate carboxylase in the facultative crassulacean-acid metabolism plant Mesembryanthemum crystallinum L. Eur J Biochem 209:95–101

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1989) Neural and developmental actions of lithium: a unifying hypothesis. Cell 59:411–420

    Article  PubMed  CAS  Google Scholar 

  • Black WJ, Van Tol A, Fernando J, Horecker BL (1972) Isolation of a highly active fructose diphosphatase from rabbit muscle: its subunit structure and activation by monovalent cations. Arch Biochem Biophys 151:576–590

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Borland AM, Hartwell J, Jenkins GI, Wilkins MB, Nimmo HG (1999) Metabolite control overrides circadian regulation of phosphoenolpyruvate carboxylase kinase and CO2 fixation in Crassulacean Acid Metabolism. Plant Physiol 121:889–896

    Article  PubMed  CAS  Google Scholar 

  • Burnette RN, Gunesekera BM, Gillaspy GE (2003) An Arabidopsis inositol 5-phosphatase gain-of-function alters Abscisic acid signaling. Plant Physiol 132:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Coelho SM, Taylor AR, Ryan KP, Sousa-Pinto I, Brown MT, Brownlee C (2002) Spatiotemporal patterning of reactive oxygen production and Ca2+ wave propagation in Fucus rhizoid cells. Plant Cell 14:2369–2381

    Article  PubMed  CAS  Google Scholar 

  • Coursol S, Giglioli-Guivarc’h N, Vidal J, Pierre JN (2000) An increase in phosphoinositide-specific phospholipase C activity precedes induction of C4 phosphoenolpyruavte carboxylase in illuminated and NH4Cl-treated protoplasts from Digitaria sanguinalis. Plant J 23:497–506

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ (1989) Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during crassulacean acid metabolism induction in the common ice plant. Plant Cell 1:715–725

    Article  PubMed  CAS  Google Scholar 

  • Echevarría C, Vidal J (2003) The unique phosphoenolpyruvate carboxylase kinase. Plant Physiol Biochem 41:541–547

    Article  CAS  Google Scholar 

  • Echevarría C, Vidal J, Jiao JA, Chollet R (1990) Reversible light activation of phosphoenolpyruvate carboxylase protein-serine kinase in maize leaves. FEBS Lett 275:25–28

    Article  PubMed  Google Scholar 

  • Echevarría C, Pacquit V, Bakrim N, Osuna L, Delgado B, Arrio-Dupont M, Vidal J (1994) The effect of pH on the covalent and metabolic control of C4 phosphoenolpyruvate carboxylase from Sorghum leaf. Arch Biochem Biophys 315:425–430

    Article  PubMed  Google Scholar 

  • Echevarría C, García-Mauriño S, Alvarez R, Soler A, Vidal J (2001) Salt stress increases the Ca2+-independent phosphoenolpyruvate carboxylase kinase activity in Sorghum plants. Planta 214:283–287

    Article  PubMed  CAS  Google Scholar 

  • Ermolova NV, Cushman MA, Taybi T, Condon SA, Cushman JC, Chollet R (2003) Expression, purification, and initial characterization of a recombinant form of plant PEP-carboxylase kinase from CAM-induced Mesembryanthemum crystallinum with enhanced solubility in Escherichia coli. Protein Expr Purif 29:123–131

    Article  PubMed  CAS  Google Scholar 

  • Fontaine V, Hartwell J, Jenkins GI, Nimmo HG (2002) Arabidopsis thaliana contains two phosphoenolpyruvate carboxylase kinase genes with different expression patterns. Plant Cell Environ 25:115–122

    Article  CAS  Google Scholar 

  • García-Mauriño S, Monreal JA, Alvarez R, Vidal J, Echevarría C (2003) Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare: independence from osmotic stress, involvement of ion toxicity and significance of dark phosphorylation. Planta 216:648–655

    PubMed  Google Scholar 

  • Giglioli-Guivarc’h N, Pierre JN, Brown S, Chollet R, Vidal J, Gadal P (1996) The light-dependent transduction pathway controlling the regulatory phosphorylation of C4-phosphoenolpyruvate carboxylase in protoplasts from Digitaria sanguinalis. Plant Cell 8:573–586

    Article  PubMed  CAS  Google Scholar 

  • Gillaspy GE, Gruissem W (2001) Li+ induces hypertrophy and down regulation of myo-inositol monophosphatase in tomato. J Plant Growth Regul 20:78–86

    Article  CAS  Google Scholar 

  • Gillaspy G, Keddle JS, Oda K, Gruissem W (1995) Inositol monophosphatase is a lithium-sensitive enzyme encoded by multigene family. Plant Cell 7:2175–2185

    Article  PubMed  CAS  Google Scholar 

  • Gil-Mascarell R, López-Coronado JM, Bellés JM, Serrano R, Rodríguez PL (1999) The Arabidopsis HAL2-like gene family includes a novel sodium-sensitive phosphatase. Plant J 17:373–383

    Article  PubMed  CAS  Google Scholar 

  • Gousset-Dupont A, Lebouteiller B, Monreal J, Echevarria C, Pierre JN, Hodges M, Vidal J (2005) Metabolite and post-translational control of phosphoenolpyruvate carboxylase from leaves and mesophyll cell protoplasts of Arabidopsis thaliana. Plant Sci DOI 10.1016/j.plantsci.2005.07.014

  • Hartwell J, Smith LH, Wilkins MB, Jenkins GI, Nimmo HG (1996) Higher plant phosphoenolpyruvate carboxylase kinase is regulated at the level of translatable mRNA in response to light or a circadian rhythm. Plant J 10:1071–1078

    Article  CAS  Google Scholar 

  • Hartwell J, Gill A, Nimmo GA, Wilkins MB, Jenkins GI, Nimmo HG (1999) Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at level of expression. Plant J 20:333–342

    PubMed  CAS  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonwealth Bureau of Horticultural and Plantation Crops, East Malling Tech Commun No 22

  • Inhorn RC, Majerus PW (1987) Effects of lithium on phosphoinositoside metabolism in vivo. J Biol Chem 262:15946–15952

    PubMed  CAS  Google Scholar 

  • Izui K, Matsumura H, Furumoto T, Kai Y (2004) Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Biol 55:69–84

    Article  PubMed  CAS  Google Scholar 

  • Jiao JA, Echevarría C, Vidal J, Chollet R (1991) Protein turnover as a component in the light/dark regulation of phosphoenolpyruvate carboxylase protein-serine kinase activity in C4 plants. Proc Natl Acad Sci USA 88:2712–2715

    Article  PubMed  CAS  Google Scholar 

  • Kende H (1973) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–303

    Article  Google Scholar 

  • Li B, Chollet R (1993) Resolution and identification of C4 phosphoenolpyruvate-carboxylase protein kinase polypeptides and their reversible light activation in maize leaves. Arch Biochem Biophys 307:416–419

    Article  PubMed  CAS  Google Scholar 

  • Li B, Chollet R (1994) Salt induction and the partial purification/characterization of phosphoenolpyruvate carboxylase protein-serine kinase from an inducible crassulacean-acid-metabolism (CAM) plant, Mesembryanthemum crystallinum L. Arch Biochem Biophys 314:247–254

    Article  PubMed  CAS  Google Scholar 

  • Li B, Zhang XQ, Chollet R (1996) Phosphoenolpyruvate carboxylase kinase in tobacco leaves is activated by light in a similar but not identical way as in maize. Plant Physiol 111:497–505

    PubMed  CAS  Google Scholar 

  • Loewus FA, Loewus MW (1983) myo-Inositol: its biosynthesis and metabolism. Annu Rev Plant Physiol 34:137–161

    Article  CAS  Google Scholar 

  • Majerus PW (1992) Inositol phosphate biochemistry. Annu Rev Biochem 61:225–250

    Article  PubMed  CAS  Google Scholar 

  • Malho R, Moutinho A, Van Der Luit A, Trewavas AJ (1998) Spatial characteristics of calcium signaling: the calcium wave as a basic unit in plant cell calcium signaling. Philos Trans R Soc Lond Ser B 353:1463–1473

    Article  CAS  Google Scholar 

  • Murguia JR, Belles JM, Serrano R (1996) The yeast HAL2 nucleotidase is an in vivo target of salt toxicity. J Biol Chem 271:29029–29033

    Article  PubMed  CAS  Google Scholar 

  • Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5:75–80

    Article  PubMed  CAS  Google Scholar 

  • Nimmo HG (2003) Control of the phosphorylation of phosphoenolpyruvate carboxylase in higher plants. Arch Biochem Biophys 414:189–196

    PubMed  CAS  Google Scholar 

  • Nimmo GA, Wilkins MB, Nimmo HG (2001) Partial purification and characterization of a protein inhibitor of phosphoenolpyruvate carboxylase kinase. Planta 213:250–257

    Article  PubMed  CAS  Google Scholar 

  • Ortega X, Velásquez JC, Pérez LM (2005) IP3 production in the hypersensitive response of lemon seedlings against Alternaria alternata involves active protein tyrosine kinases but not a G-protein. Biol Res 38:89–99

    Article  PubMed  CAS  Google Scholar 

  • Pacquit V, Giglioli N, Crétin C, Pierre JN, Vidal J, Echevarría C (1995) Regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase from Sorghum: an immunological study using specific anti-phosphorylation site-antibodies. Photosynth Res 43:283–288

    Article  CAS  Google Scholar 

  • Plieth C, Sattelmacher B, Knight MR (2000) Ammonium uptake and cellular alkalisation in roots of Arabidopsis thaliana: the involvement of cytoplasmic calcium. Physiol Plant 110:518–523

    CAS  Google Scholar 

  • Reggiani R, Laoreti P (2000) Evidence for the involvement of Phospholipase C in the anaerobic signal transduction. Plant Cell Physiol 41:1392–1396

    Article  PubMed  CAS  Google Scholar 

  • Saze H, Ueno Y, Hisabori T, Hayashi H, Izui K (2001) Thioredoxin-mediated reductive activation of a protein kinase for the regulatory phosphorylation of C4-form phosphoenolpyruvate carboxylase from maize. Plant Cell Physiol 42:1295–1302

    Article  PubMed  CAS  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  PubMed  CAS  Google Scholar 

  • Taybi T, Patil S, Chollet R, Cushman JC (2000) A minimal serine/threonine protein kinase circadianly regulates phosphoenolpyruvate carboxylase activity in Crassulacean Acid Metabolism-induced leaves of the common ice plant. Plant Physiol 123:1471–1482

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida Y, Furumoto T, Izumida A, Hata S, Izui K (2001) Phosphoenolpyruvate carboxylase kinase involved in C4 photosynthesis in Flaveria trinervia: cDNA cloning and characterization. FEBS Lett 507:318–322

    Article  PubMed  CAS  Google Scholar 

  • Vidal J, Chollet R (1997) Regulatory phosphorylation of C4 PEP carboxylase. Trends Plant Sci 2:230–237

    Article  Google Scholar 

  • Wang YH, Chollet R (1993) Partial purification and characterization of phosphoenolpyruvate carboxylase protein-serine kinase from illuminated maize leaves. Arch Biochem Biophys 304:496–502

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS (2003) Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J Biol Chem 278:33067–33077

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank R. Chollet for the generous gift of the CAM PEPCase-k antibodies and M. Hodges for carefully reading the manuscript. This research was supported by the Dirección General de Investigación del Ministerio de Ciencia y Tecnología (BMC2001-2366-CO3-02) and by the Junta de Andalucía (PAI group CVI298). José A. Monreal was financed by a FPI fellowship from Universidad de Sevilla (Spain). We thank J.M. Vinardell and J. Ollero for scientific advice and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofía García-Mauriño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monreal, J.A., López-Baena, F.J., Vidal, J. et al. Effect of LiCl on phosphoenolpyruvate carboxylase kinase and the phosphorylation of phosphoenolpyruvate carboxylase in leaf disks and leaves of Sorghum vulgare . Planta 225, 801–812 (2007). https://doi.org/10.1007/s00425-006-0391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0391-0

Keywords

Navigation