Planta

, Volume 225, Issue 3, pp 681–691 | Cite as

α-Tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants

  • Sergi Munné-Bosch
  • Elmar W. Weiler
  • Leonor Alegre
  • Maren Müller
  • Petra Düchting
  • Jon Falk
Original Article

Abstract

Most studies on the function of tocopherols in plants have focused on their photo-protective and antioxidant properties, and it has been recently suggested, though not yet demonstrated, that they may also play a role in cellular signaling. By using vte1 mutants of Arabidopsis thaliana, with an insertion in the promoter region of the gene encoding tocopherol cyclase, we demonstrate here for the first time that tocopherol deficiency may alter endogenous phytohormone levels in plants, thereby reducing plant growth and triggering anthocyanin accumulation in leaves. In plants grown under a combination of high light and low temperature conditions to induce anthocyanin accumulation, we evaluated age-dependent changes in tocopherols, indicators of photo-oxidative stress, phytohormone levels, plant growth and anthocyanin levels in wild type and vte1 mutants. These mutants showed lower tocopherol levels, reduced growth and enhanced anthocyanin accumulation compared with the wild type, while both the maximum and relative efficiencies of PSII, chlorophylls, and carotenoids were not significantly altered. Analyses of phytohormone levels revealed that reduced growth and enhanced anthocyanin accumulation in tocopherol-deficient plants were preceded by increased jasmonic acid levels. This is the first study suggesting a direct effect of tocopherols on phytohormones levels in plants and will undoubtedly help us to better understand the multiple functions tocopherols play in plants, as well as the cellular signaling mechanisms responsible for the phenotypes thus far described in tocopherol-deficient plants.

Keywords

Anthocyanins Jasmonic acid Photoprotection Phytohormones Signaling Tocopherols 

Abbreviations

ABA

Abscisic acid

DW

Dry weight

φPSII

Relative efficiency of PSII

Fv/Fm

Maximum efficiency of PSII

IAA

Indol-3-acetic acid

JA

Jasmonic acid

OPDA

12-Oxo-phytodienoic acid

PPFD

Photosynthetically active photon flux density

PSII

Photosystem II

ROS

Reactive oxygen species

RWC

Relative water content

SA

Salicylic acid

References

  1. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657PubMedCrossRefGoogle Scholar
  2. Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639PubMedCrossRefGoogle Scholar
  3. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396PubMedCrossRefGoogle Scholar
  4. Azzi A, Boscoboinik D, Fazzio A, Marilley D, Maroni P, Ozer NK, Spycher S, Tasinato A (1998) RRR-α-Tocopherol regulation of gene transcription in response to the cell oxidant status. Z Ernahrungswiss 37:21–28PubMedGoogle Scholar
  5. Baier M, Dietz K (2005) Chloroplasts as source and target of cellular redox regulation: a discussion of chloroplast redox signals in the context of plant physiology. J Exp Bot 56:1449–1462PubMedCrossRefGoogle Scholar
  6. Ball L, Accotto G, Bechtold U, Creissen G, Funck D, Jiménez A, Kular B, Leyland N, Mejía-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462PubMedCrossRefGoogle Scholar
  7. Botha CEJ, Cross RHM, van Bel AJE, Peter CI (2000) Phloem loading in the sucrose-export-defective (SXD-1) mutant maize is limited by callose deposition at plasmodesmata in bundle sheath-vascular parenchyma interface. Protoplasma 214:65–72CrossRefGoogle Scholar
  8. Brigelius-Flohé R, Kelly FJ, Salonen JT, Neuzil J, Zingg J, Azzi A (2002) The European perspective on vitamin E: current knowledge and future research. Am J Clin Nutr 76:703–716PubMedGoogle Scholar
  9. Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16: 1143–1162PubMedCrossRefGoogle Scholar
  10. Chory J, Peto CA (1990) Mutations in the DET1 gene affect cell-type-specific expression of light-regulated genes and chloroplast development in Arabidopsis. Proc Natl Acad Sci USA 87:8776–8780PubMedCrossRefGoogle Scholar
  11. Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381PubMedCrossRefGoogle Scholar
  12. DellaPenna D (2005) Progress in the dissection and manipulation of vitamin E synthesis. Trends Plant Sci 10:574–579PubMedCrossRefGoogle Scholar
  13. Demmig-Adams B, Adams III WW (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153PubMedCrossRefGoogle Scholar
  14. Fahrenholtz SR, Doleiden FH, Tozzolo AM, Lamola AA (1974) On the quenching of singlet oxygen by α-tocopherol. Photochem Photobiol 20: 505–509PubMedGoogle Scholar
  15. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedCrossRefGoogle Scholar
  16. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92Google Scholar
  17. Gitelson AA, Merzlyak MN, Chivkunova OB (2001) Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem Photobiol 74:38–45PubMedCrossRefGoogle Scholar
  18. Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151CrossRefGoogle Scholar
  19. Havaux M, Eymery F, Porfirova S, Rey P, Dörmann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17:3451–3469PubMedCrossRefGoogle Scholar
  20. Hofius D, Sonnewald U (2003) Vitamin E biosynthesis: biochemistry meets cell biology. Trends Plant Sci 8:6–8PubMedCrossRefGoogle Scholar
  21. Hofius D, Hajirezaei M, Geiger M, Tschierschh H, Melzer M, Sonnewald U (2004) RNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. Plant Physiol 135:1256–1268PubMedCrossRefGoogle Scholar
  22. Kanwischer M, Porfirova S, Bergmüller E, Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723PubMedCrossRefGoogle Scholar
  23. Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832PubMedCrossRefGoogle Scholar
  24. Kozlowski TT, Pallardy SG (2001) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334CrossRefGoogle Scholar
  25. Kruk J, Strzalka K (1995) Occurrence and function of α-tocopherol quinone in plants. J Plant Physiol 145:405–409Google Scholar
  26. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:331–382Google Scholar
  27. Liebler DC, Burr JA (1992) Oxidation of vitamin E during iron-catalyzed lipid peroxidation: evidence for electron-transfer reactions of the tocopheroxyl radical. Biochemistry 8:8278–8284CrossRefGoogle Scholar
  28. Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2005) Tocopherols protect Synechocystis sp. Strain PCC 6803 from lipid peroxidation. Plant Physiol 138:1422–1435PubMedCrossRefGoogle Scholar
  29. Manetas Y (2006) Why some leaves are anthocyanic and why most anthocyanic leaves are red? Flora 201:163–177Google Scholar
  30. Müller A, Düchting P, Weiler EW (2002) A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216:44–56PubMedCrossRefGoogle Scholar
  31. Munné-Bosch S (2005a) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748CrossRefGoogle Scholar
  32. Munné-Bosch S (2005b) Linking tocopherols with cellular signaling in plants. New Phytol 166:363–366CrossRefGoogle Scholar
  33. Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57CrossRefGoogle Scholar
  34. Munné-Bosch S, Alegre L (2003). Drought-induced changes in the redox state of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae plants differing in carnosic acid contents. Plant Physiol 131:1816–1825PubMedCrossRefGoogle Scholar
  35. Munné-Bosch S, Falk J (2004) New insights into the function of tocopherols in plants. Planta 218:323–326PubMedCrossRefGoogle Scholar
  36. Munné-Bosch S, Shikanai T, Asada K (2005) Enhanced ferredoxin-dependent cyclic electron flow around photosystem I and α-tocopherol quinone accumulation in water-stressed ndhB-inactivated tobacco mutants. Planta 222:502–511PubMedCrossRefGoogle Scholar
  37. Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359PubMedCrossRefGoogle Scholar
  38. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279PubMedCrossRefGoogle Scholar
  39. Porfirova S, Bergmüller E, Tropf S, Lemke R, Dörmann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99:12495–12500PubMedCrossRefGoogle Scholar
  40. Satter RL, Galston AW (1981) Mechanisms of control of leaf movements. Annu Rev Plant Physiol 32:83–110CrossRefGoogle Scholar
  41. Sattler SE, Cahoon EB, Coughlan SJ, DellaPenna D (2003) Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol 132:2184–2195PubMedCrossRefGoogle Scholar
  42. Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Plant Sci 19:267–290CrossRefGoogle Scholar
  43. Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361CrossRefGoogle Scholar
  44. Surpin M, Larkin RM, Chory J (2002) Signal transduction between the chloroplast and the nucleus. Plant Cell 14:S327–S338PubMedGoogle Scholar
  45. Terashima I, Miyazawa S, Handa YT (2001) Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 difussion in the leaf. J Plant Res 114:93–105CrossRefGoogle Scholar
  46. Trebst A, Depka B, Holländer-Czytko (2002) A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett 516:156–160PubMedCrossRefGoogle Scholar
  47. Turgeon R, Medville R, Nixon KC (2001) The evolution of minor vein phloem and phloem loading. Am J Bot 88:1331–1339CrossRefGoogle Scholar
  48. Van Bel AJE (1993) Strategies of phloem loading. Annu Rev Plant Physiol Plant Mol Biol 44:253–281CrossRefGoogle Scholar
  49. Weston E, Thorogood K, Vinti G, López-Juez E (2000) Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants. Planta 211:807–815PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Sergi Munné-Bosch
    • 1
  • Elmar W. Weiler
    • 2
  • Leonor Alegre
    • 1
  • Maren Müller
    • 1
  • Petra Düchting
    • 2
  • Jon Falk
    • 3
  1. 1.Departament de Biologia Vegetal, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Ruhr Universität BochumBochumGermany
  3. 3.Botanisches Institut Christian-Albrechts-Universität zu KielKielGermany

Personalised recommendations