Skip to main content
Log in

Isolation and characterization of a novel v-SNARE family protein that interacts with a calcium-dependent protein kinase from the common ice plant, Mesembryanthemum crystallinum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

McCPK1 (Mesembryanthemum crystallinum calcium-dependent protein kinase 1) mRNA expression is transiently salinity- and dehydration-stress responsive. The enzyme also undergoes dynamic subcellular localization changes in response to these same stresses. Using the yeast-two hybrid system, we have isolated and characterized a M. crystallinum CPK1 Adaptor Protein 2 (McCAP2). We show that McCPK1 interacts with the C-terminal, coiled-coil containing region of McCAP2 in the yeast two-hybrid system. This interaction was confirmed in vitro between the purified recombinant forms of each of the proteins and in vivo by coimmunoprecipitation experiments from plant extracts. McCAP2, however, was not a substrate for McCPK1. Computational threading analysis suggested that McCAP2 is a member of a novel family of proteins with unknown function also found in rice and Arabidopsis. These proteins contain coiled-coil spectrin repeat domains present in the syntaxin superfamily that participate in vesicular and protein trafficking. Consistent with the interaction data, subcellular localization and fractionation studies showed that McCAP2 colocalizes with McCPK1 to vesicular structures located on the actin cytoskeleton and within the endoplasmic reticulum in cells subjected to low humidity stress. McCAP2 also colocalizes with AtVTI1a, an Arabidopsis v-SNARE [vesicle-soluble N-ethyl maleimide-sensitive factor (NSF) attachment protein (SNAP) receptor] present in the trans-Golgi network (TGN) and prevacuolar compartments (PVCs). Both interaction and subcellular localization studies suggest that McCAP2 may possibly serve as an adaptor protein responsible for vesicle-mediated trafficking of McCPK1 to or from the plasma membrane along actin microfilaments of the cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CDPK:

Calcium-dependent protein kinase

ABA:

Abscisic acid

IPTG:

Isopropyl thio-β-d-galactoside

3-AT:

3-Amino-1,2,4-triazole

Ni-NTA:

Nickel-nitrilotriacetic acid

PVC:

Prevacuolar compartment

PVDF:

Polyvinylidene fluoride

TGN:

trans-Golgi network

v-SNARE:

vesicle-soluble N-ethyl maleimide-sensitive factor attachment protein receptor

YTH:

Yeast two-hybrid

6 × His-tag:

Six histidine tag

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anil VS, Harmon AC, Rao KS (2000) Spatio-temporal accumulation and activity of calcium-dependent protein kinases during embryogenesis, seed development, and germination in sandalwood. Plant Physiol 122:1035–1043

    Article  PubMed  CAS  Google Scholar 

  • Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46:356–366

    Article  PubMed  CAS  Google Scholar 

  • Billker O, Dechampes S, Tewari R, wenig G, Franke-Fayard B, Brinkmann (2004) Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malarial parasite. Cell 117:503–514

    Article  PubMed  CAS  Google Scholar 

  • Chandran V, Stollar EJ, Lindorff-Larsen K, Harper JF, Chazin WJ, Dobson CM, Luisi BF, Christodoulou J (2006) Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): a novel mode of calmodulin-target recognition. J Mol Biol 357:400–410

    Article  PubMed  CAS  Google Scholar 

  • Chehab EW, Patharkar OR, Hegeman AD, Taybi T, Cushman JC (2004) Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum. Plant Physiol 135:1430–1446

    Article  PubMed  CAS  Google Scholar 

  • Cheng SH, Sheen J, Gerrish C, Bolwell GP (2001) Molecular identification of phenylalanine ammonia-lyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS Lett 503:185–188

    Article  PubMed  CAS  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases: the Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  PubMed  CAS  Google Scholar 

  • Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  PubMed  CAS  Google Scholar 

  • Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761

    Article  PubMed  CAS  Google Scholar 

  • Dammann D, Ichida A, Hong B, Romanowsky S, Hrabak EM, Harmon AC, Pickard BG, Harper JF (2003) Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol 132:1840–1848

    Article  PubMed  CAS  Google Scholar 

  • Geitz RD, Schiestl RH (1995) Transforming yeast with DNA. Method Mol Cell Biol 5:255–269

    Google Scholar 

  • Harper JF, Harmon A (2005) Plants, symbiosis, and parasites: a calcium signaling connection. Nat Rev Mol Cell Biol 6:555–566

    Article  PubMed  CAS  Google Scholar 

  • Harper JF, Breton G, Harmon A (2004) Decoding Ca2+ signals through plant protein kinases. Ann Rev Plant Biol 55:263–288

    Article  CAS  Google Scholar 

  • Heimann K, Percival JM, Weinberger R, Gunning P, Stow JL (1999) Specific isoforms of actin-binding proteins on distinct populations of Golgi-derived vesicles. J Biol Chem 274:10743–10750

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1938) The water-culture method for growing plants without soil. Circ. 347. University of California Agriculture Exp. Station, Berkley

  • Horton P, Park K-J, Obayashi T, Nakai K (2006) Protein Subcellular Localization Prediction with WoLF PSORT. In: Proceedings of the 4th Annual Asia Pacific bioinformatics conference APBC06, Taipei, Taiwan, pp 39–48

  • Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford H, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu J-K, Harmon AC (2003) The Arabidopsis CDPK-SnRK Superfamily of Protein Kinases. Plant Physiol 132:666–680

    Article  PubMed  CAS  Google Scholar 

  • Ishino T, Orito Y, Chinzei Y, Yuda M (2006) A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. Mol Microbiol 59:1175–1184

    Article  PubMed  CAS  Google Scholar 

  • Ivashuta S, Liu J, Liu J, Lohar DP, Haridas S, Bucciarelli B, VandenBosch KA, Vance CP, Harrison MJ, Gantt JS (2005) RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17:2911–2921

    Article  PubMed  CAS  Google Scholar 

  • James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    PubMed  CAS  Google Scholar 

  • Kelly LA, MacCallum RM, Sternberg MJE (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:501–522

    Article  CAS  Google Scholar 

  • Kim DH, Eu YJ, Yoo CM, Kim YW, Pih KT, Jin JB, Kim SJ, Stenmark H, Hwang I (2001) Trafficking of Phosphatidylinositol 3-Phosphate from the trans-Golgi Network to the Lumen of the Central Vacuole in Plant Cells. Plant Cell 13:287–301

    Article  PubMed  CAS  Google Scholar 

  • Kost B, Spielhofer P, Chua NH (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16:393–401

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee SS, Cho HC, Yoon GM, Ahn JW, Kim HH, Pai HS (2003) Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum. Plant J 33:825–840

    Article  PubMed  CAS  Google Scholar 

  • Levin PA, Kurtser IG, Grossman AD (1999) Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc Natl Acad Sci USA 96:9642–9647

    Article  PubMed  CAS  Google Scholar 

  • Lu SX Hrabak EM (2002) An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol 128:1008–1021

    Article  CAS  Google Scholar 

  • Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JD, Romeis T (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci USA 102:10736–10741

    Article  PubMed  CAS  Google Scholar 

  • Madera M, Vogel C, Kummerfeld SK, Chothia C, Gough J (2004) The superfamily database in 2004: additions and improvements. Nucleic Acids Res 32:D235–D239

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331

    PubMed  CAS  Google Scholar 

  • Martín ML, Busconi L (2000) Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J 24:429–435

    Article  PubMed  Google Scholar 

  • McDonnell AV, Jiang T, Keating AE, Berger B (2006) Paircoil2: improved prediction of coiled coils from sequence. Bioinformatics 22:356–358

    Article  PubMed  CAS  Google Scholar 

  • Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Barrell D, Bateman A, Binns D, Biswas M, Bradley P, Bork P, Bucher P, Copley RR, Courcelle E, Das U, Durbin R, Falquet L, Fleischmann W, Griffiths-Jones S, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lopez R, Letunic I, Lonsdale D, Silventoinen V, Orchard SE, Pagni M, Peyruc D, Ponting CP, Selengut JD, Servant F, Sigrist CJ, Vaughan R, Zdobnov EM (2003) The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res 31:315–318

    Article  PubMed  CAS  Google Scholar 

  • Müsch A, Cohen D, Rodriguez-Boulan E (1997) Myosin II is involved in the production of constitutive transport vesicles from the TGN. J Cell Biol 138:291–306

    Article  PubMed  Google Scholar 

  • Newman JRS, Wolf E, Kim PS (2000) A computationally directed screen identifying interacting coiled-coils from Saccaromyces cervisiae. Proc Natl Acad Sci USA 97:13203–13208

    Article  PubMed  CAS  Google Scholar 

  • Ohyama A, Komiya Y, Igarashi M (2001) Globular tail of myosin is bound to VAMP/syntaptobrevin. Biochem Biophys Res Commun 280:988–991

    Article  PubMed  CAS  Google Scholar 

  • Patharkar OR, Cushman JC (2000) A stress-induced calcium dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J 24:679–691

    Article  PubMed  CAS  Google Scholar 

  • Patharkar OR, Cushman, JC (2006) A novel coiled-coil protein co-localizes and interacts with a calcium-dependent protein kinase in the common ice plant during low-humidity stress. Planta (in press)

  • Pical C, Fredlund KM, Petit PX, Sommarin M, Moller IM (1993) The outer membrane of plant mitochondria contains a calcium-dependent protein kinase and multiple phosphoproteins. FEBS Lett 336:347–351

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez Milla MA, Townsend J, Chang IF, Cushman JC (2006) The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways. Plant Mol Biol 580:904–911

    CAS  Google Scholar 

  • Romeis T, Ludwig AA, Martin R, Jones JDG (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556–5567

    Article  PubMed  CAS  Google Scholar 

  • Rutschmann F, Stalder U, Piotrowski M, Oecking C, Schaller A (2002) LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization. Plant Physiol 129:156–168

    Article  PubMed  CAS  Google Scholar 

  • Sadoulet-Puccio HM, Rajala M, Kunkel LM (1997) Dystrobrevin and dystrophin: an interaction through coiled-coil motifs. Proc Natl Acad Sci USA 94:12413–12418

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Kinoshita N, Ishiyama K, Hata S, Kyozuka J, Hayakawa T, Nakamura T, Shimamoto K, Yamaya T, Izui K (2001) A Ca2+-dependent protein kinase that endows rice plants with cold- and salt-stress tolerance functions in vascular bundles. Plant Cell Physiol 42:1228–1233

    Article  PubMed  CAS  Google Scholar 

  • Schäffer AA, Aravind L, Madden TL, Shavirin S, Spouge, Wolf YI, Koonin EV, Altschul SF (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005

    Article  PubMed  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    Article  PubMed  CAS  Google Scholar 

  • Szczegielniak J, Klimecka M, Liwosz A, Ciesielski A, Kaczanowski S, Dobrowolska G, Harmon AC, Muszynska G (2005) A wound-responsive and phospholipid-regulated maize calcium-dependent protein kinase. Plant Physiol 139:1970–1983

    Article  PubMed  CAS  Google Scholar 

  • Taybi T, Cushman JC (1999) Signaling events leading to Crassulacean acid metabolism induction in the common ice plant. Plant Physiol 121:545–555

    Article  PubMed  CAS  Google Scholar 

  • Teng FY, Wang Y, Tang BL (2001) The syntaxins. Genome Biol 2:3012

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Trelease RN, Lee MS. Banjoko A, Bunkelmann J (1995) C-terminal polypeptide are necessary and sufficient for in vivo targeting of transiently-expressed proteins to peroxisomes in suspension-cultured plant cells. Protoplasma 195:156–167

    Article  Google Scholar 

  • Vitart V, Christodoulou J, Huang JF, Chazin WJ, Harper JF (2000) Intramolecular activation of a Ca2+-dependent protein kinase is disrupted by insertions in the tether that connects the calmodulin-like domain to the kinase. Biochemistry 39:4004–4011

    Article  PubMed  CAS  Google Scholar 

  • Weljie AM, Clarke TE, Juffer AH, Harmon AC, Vogel HJ (2000) Comparative modeling studies of the calmodulin-like domain of calcium-dependent protein kinase from soybean. Proteins 39:343–357

    Article  PubMed  CAS  Google Scholar 

  • Wolf E, Kim PS, Berger B (1997) MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci 6:1179–1189

    Article  PubMed  CAS  Google Scholar 

  • Yoon GM, Dowd PE, Gilroy S, McCubbin AG (2006) Calcium-dependent protein kinase isoforms in petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18:867–878

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Lu YT (2003) Calmodulin-binding protein kinases in plants. Trends Plant Sci 8:123–127

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, von Mollard GF, Kovaleva V, Stevens TH, Raikhel NV (1999) The plant vesicle-associated SNARE AtVTI1a likely mediates vesicle transport from the trans-Golgi network to the prevacuolar compartment. Mol Biol Cell 10:2251–2264

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Tahar Taybi for providing the McCPK1–GFP construct. We are grateful to Dr. Phillip James for providing us with the yeast host stain, PJ69-4A, which was used for this work. We also thank Jen Sheen (Massachusetts General Hospital, Boston, MA, USA) for kindly providing the 35S-GFP-TYG-nos and HBT95 constructs, Dr. Jeff Harper (University of Nevada, Reno) for kindly providing the GFP-KSRM construct, and Inhan Hwang (Gyeongsang National University, Korea) for kindly providing AtVTI1a-GFP and BiP-GFP constructs. The authors would also like to thank Joan Rowe at the University of Nevada Genomics Center for automated DNA sequencing services. This work was supported in part by the U.S. Department of Agriculture - National Research Initiative - Competitive Grants Program (Grant No. 98-35100-6035), by the National Science Foundation (Grant No. MCB-0114769), and the Nevada Agricultural Experiment Station, and is published as publication No. 03066952 of the University of Nevada Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Cushman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chehab, E.W., Patharkar, O.R. & Cushman, J.C. Isolation and characterization of a novel v-SNARE family protein that interacts with a calcium-dependent protein kinase from the common ice plant, Mesembryanthemum crystallinum . Planta 225, 783–799 (2007). https://doi.org/10.1007/s00425-006-0371-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0371-4

Keywords

Navigation