Skip to main content

Advertisement

Log in

An in vivo, luciferase-based, Agrobacterium-infiltration assay system: implications for post-transcriptional gene silencing

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

An in vivo assay system for analyzing transient luciferase expression in tobacco leaves infused with Agrobacterium tumefaciens is described. The system makes use of A. tumefaciens harboring T-DNA vectors containing either an intron-containing firefly (Photinus pyralis) luciferase (EC 1.13.12.7) gene or an intron-containing sea pansy (Renilla reniformis) luciferase (EC 1.13.12.5) gene. Single or mixed Agrobacterium lines were infiltrated into leaf tissues (Nicotiana tabacum or Nicotiana benthamiana) through stomatal openings and leaf disks from infused areas floated on reaction buffers specific to each enzyme. Photons emitted were then measured to determine reporter gene activity. Parameters affecting assay reliability and sensitivity were tested, including: buffer composition; bacterial density; infusion location; reaction kinetics; and environmental factors (light and temperature). The resulting in vivo assay system generates results comparable to those obtained using a commercially available in vitro dual-luciferase® reporter gene assay, and reports relative expression levels, as well as induction characteristics, analogous to those obtained using leaf tissue from stably transformed plants harboring the same promoter::gene constructs. Light and temperature were observed to markedly impact transient reporter activities. Co-expression of viral suppressors of post-transcriptional gene silencing (PTGS), HcPro, p19 and AC2, confirms the occurrence of PTGS within infused zones, and provides a convenient mechanism for PTGS analysis. The in vivo transient assay was used to examine the effect on PTGS of factors such as: promoter strength; incubation temperature and double-stranded RNA production. Results from these assays provide insight into the mechanism(s) used by plants to trigger and maintain PTGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AC2:

Geminivirus trans-activating protein

alcA :

Aspergillus nidulans alcA (alcohol dehydrogenase) promoter

alcR :

Aspergillus nidulans alcR (activator) gene

bar :

Phosphinothricin acetyl transferase gene

CAM:

Coelenterazine assay mixture

CbCi:

Castor bean catalase intron

dpi:

Days post-infusion

hpi:

Hours post-infusion

HcPro:

Helper component protein

GFP:

Green fluorescent protein (Aequorea victoria)

GUS:

Escherichia coli β-glucuronidase

GUSi:

Intron-modified β-glucuronidase

IM:

Infiltration media

LAM:

Luciferin (firefly) assay mixture

FLUC:

Firefly (Photinus pyralis) luciferase

FiLUC:

Firefly (Photinus pyralis) intron-modified luciferase

p19:

19 kDa protein of tombusviruses

PTGS:

Post-transcriptional gene silencing

PVY:

Potato virus Y

PHV:

Pepper Huasteco virus

R0 :

Primary transformant

R1 :

Progeny of self-fertilized R0 plant

RLUC:

Renilla reniformis (sea pansy) luciferase

RiLUC:

Renilla reniformis (sea pansy) intron-modified luciferase

RLU:

Relative light units

TrAP:

Transcription activator (or transactivator) protein

References

  • Abramoff MD, Magelhaes PJ, Ram S (2004) Image processing with imageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Akama K, Shiraishi H, Ohta s, Nakamura K, Okada K, Shimura Y (1992) Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains. Plant Cell Rep 12:7–11

    Article  CAS  Google Scholar 

  • Andrews LB, Curtis WR (2005) Comparison of transient protein expression in tobacco leaves and plant suspension culture. Biotechnol Prog 21:946–952

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe DC (1996) RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Mol Biol 32:79–88

    Article  PubMed  CAS  Google Scholar 

  • Benfey P, Chua N (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  PubMed  CAS  Google Scholar 

  • Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe DC (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17:6739–6746

    Article  PubMed  CAS  Google Scholar 

  • Caddick M, Greenland A, Jepson I, Krause K, Qu N, Riddell K, Salter M, Schuch W, Sonnewald U, Tomsett A (1997) An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat Biotechnol 16:177–180

    Article  Google Scholar 

  • Cazzonelli CI, Velten J (2003) Construction and testing of an intron-containing luciferase reporter gene from Renilla reniformis. Plant Mol Biol Rep 21:271–280

    Article  CAS  Google Scholar 

  • Cazzonelli CI, Velten J (2004) Analysis of RNA-mediated gene silencing using a new vector (pKNOCKOUT) and an in planta Agrobacterium transient expression system. Plant Mol Biol Rep 22:347–359

    Article  CAS  Google Scholar 

  • Cazzonelli CI, Burke J, Velten J (2005) Functional characterization of the geminiviral conserved late element (CLE) in uninfected tobacco. Plant Mol Biol 58:465–481

    Article  PubMed  CAS  Google Scholar 

  • Chellappan P, Vanitharani R, Ogbe F, Fauquet CM (2005) Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol 138:1828–1841

    Article  PubMed  CAS  Google Scholar 

  • Czarnecka E, Key JL, Gurley WB (1989) Regulatory domains of the Gmhsp17.5-E heat shock promoter of soybean. Mol Cell Biol 9:3457–3463

    PubMed  CAS  Google Scholar 

  • Dunoyer P, Lecellier CH, Parizotto EA, Himber C, Voinnet O (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16:1235–1250

    Article  PubMed  CAS  Google Scholar 

  • Fortier E, Belote JM (2000) Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26:240–244

    Article  PubMed  CAS  Google Scholar 

  • Francis KE, Spiker S (2005) Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant J 41:464–477

    Article  PubMed  CAS  Google Scholar 

  • Frey PM, Scharer-Hernandez NG, Futterer J, Potrykus I, Puonti-Kaerlas J (2001) Simultaneous analysis of the bidirectional African cassava mosaic virus promoter activity using two different luciferase genes. Virus Genes 22:231–242

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 218:208–218

    Article  Google Scholar 

  • Horsch R, Fry J, Hoffman N, Neidermeyer J, Rogers S, Fraley R (1988) Leaf disc transformation. In: Gelvin S, Schilperoort R (eds) Plant molecular biology manual. Kluwer Academic Publishers, Belgium, pp 1–9

    Google Scholar 

  • Jefferson R, Kavanagh T, Bevan M (1987) GUS fusions: b-glucoronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126:930–938

    Article  PubMed  CAS  Google Scholar 

  • Jones L, Hamilton AJ, Voinnet O, Thomas CL, Maule AJ, Baulcombe DC (1999) RNA–DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11:2291–2301

    Article  PubMed  CAS  Google Scholar 

  • Kalantidis K, Psaradakis S, Tabler M, Tsagris M (2002) The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact 15:826–833

    Article  PubMed  CAS  Google Scholar 

  • Kameda T, Ikegami K, Liu Y, Terada K, Sugiyama T (2004) A hypothermic-temperature-sensitive gene silencing by the mammalian RNAi. Biochem Biophys Res Commun 315:599–602

    Article  PubMed  CAS  Google Scholar 

  • Kapila J, DeRycke R, VanMontagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Kasschau KD, Carrington JC (2001) Long-distance movement and replication maintenance functions correlate with silencing suppression activity of potyviral HC-Pro. Virology 285:71–81

    Article  PubMed  CAS  Google Scholar 

  • Kreis P, Cormier MJ (1967) Inhibition of Renilla reniformis bioluminescence by light: effects on luciferase and its substrates. Biochim Biophys Acta 141:181–183

    PubMed  CAS  Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot (Lond) 94:481–495

    Article  CAS  Google Scholar 

  • Maiti IB, Shepherd RJ (1998) Isolation and expression analysis of peanut chlorotic streak caulimovirus (PClSV) full-length transcript (FLt) promoter in transgenic plants. Biochem Biophys Res Commun 244:440–444

    Article  PubMed  CAS  Google Scholar 

  • Manerlöf M, Tenning P (1997) Variability of gene expression in transgenic tobacco. Euphytica 98:133–139

    Article  Google Scholar 

  • Mankin S, Allen G, Thompson W (1997) Introduction of a plant intron into the luciferase gene of Photinus pyralis. Plant Mol Biol Rep 15:186–196

    Article  CAS  Google Scholar 

  • Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23:718–723

    Article  PubMed  CAS  Google Scholar 

  • Matsuo N, Minami M, Maeda T, Hiratsuka K (2001) Dual luciferase assay for monitoring transient gene expression in higher plants. Plant Biotechnol 18:71–75

    CAS  Google Scholar 

  • Mayerhofer R, Langridge W, Cormier M, Szalay A (1995) Expression of recombinant Renilla luciferase in transgenic plants results in high levels of light emission. Plant J 7:1031–1038

    Article  CAS  Google Scholar 

  • Ni M, Cui D, Einstein J, Narasimhulu S, Vergara Q, Gelvin S (1995) Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J 7:661–676

    Article  CAS  Google Scholar 

  • Ow DW, Wood KV, DeLuca M, DeWet JR, Helsinki DR, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–859

    Article  PubMed  CAS  Google Scholar 

  • Peach C, Velten J (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17:49–60

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I (1991) Gene transfer to plants: assessment of published approaches and results. Annu Rev Plant Physiol Plant Mol Biol 42:205–225

    Article  CAS  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sherf B, Navarro S, Hannah R, Wood K (1996) Dual-luciferaseTM reporter assay: an advanced co-reporter technology integrating firefly and Renilla luciferase assays. Promega Notes 57:2–9

    Google Scholar 

  • Spolaore S, Trainotti L, Casadoro G (2001) A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. J Exp Bot 52:845–850

    PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1995) Generation of transgenic tobacco plants by cocultivation of leaf disks with Agrobacterium pPZP binary vectors. In: Maliga P (ed) Methods in plant molecular biology : a laboratory course manual. Cold Spring Harbor Laboratory Press, Plainview, pp 55–77

    Google Scholar 

  • Szittya G, Silhavy D, Molnar A, Havelda Z, Lovas A, Lakatos L, Banfalvi Z, Burgyan J (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–640

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Mita S, Ohta S, Kyozuka J, Shimamoto K, Nakamura K (1990) Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucleic Acids Res 18:6767–6770

    Article  PubMed  CAS  Google Scholar 

  • Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21:963–977

    Article  PubMed  CAS  Google Scholar 

  • Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79:2517–2527

    Article  PubMed  CAS  Google Scholar 

  • Van der Hoorn RA, Laurent F, Roth R, De Wit PJ (2000) Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol Plant Microbe Interact 13:439–446

    Article  PubMed  Google Scholar 

  • Vanitharani R, Chellappan P, Fauquet CM (2005) Geminiviruses and RNA silencing. Trends Plant Sci 10:144–151

    PubMed  CAS  Google Scholar 

  • Velten J, Morey KJ, Cazzonelli CI (2005) Plant viral intergenic DNA sequence repeats with transcription enhancing activity. Virol J 2:16

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the P19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  PubMed  CAS  Google Scholar 

  • Walkerpeach C, Velten J (1994) Agrobacterium-mediated gene transfer to plant cells cointegrate and binary vector systems. In: Gelvin S, Schilperoort R (eds) Plant molecular biology manual, 2nd edn. Kluwer Academic, Dordrecht, pp B1:1–B1:19

    Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551

    Article  PubMed  CAS  Google Scholar 

  • Zambre M, Terryn N, De Clercq J, De Buck S, Dillen W, Van Montagu M, Van Der Straeten D, Angenon G (2003) Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta 216:580–586

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. S. Luke Mankin (BASF Plant Science, Res Triangle Park, NC, USA) for supplying FiLUC, Dr. Stan Gelvin (Purdue University, West Lafayette, IN, USA) for the pE1778-SUPER promoter vector, and Dr. David Baulcombe (The Sainsbury Laboratory, Norwich, UK) for pBIN61-HcPro and pBIN61-p19 suppressor constructs. We wish to also thank Dr. Robert Gilbertson (University of California, Davis, CA, USA) for pBluescript::PHV-AC2, Syngenta Limited for providing the ethanol-inducible (alcA & alcR) constructs and Dr. William Gurley (University of Florida, Gainesville, FL, USA) for the Gmhsp17.5 heat shock promoter. Our appreciation goes out to John Burke and Junping Chen (USDA-ARS) for critical reading of the manuscript and the pTHSP17.5-E construct, David Wheeler, Brian Sanderson, Kay McCrary and DeeDee Laumbach (USDA-ARS) for expert technical support, and the two anonymous Planta reviewers for suggestions that resulted in a much improved manuscript. Funding was provided by a USDA-ARS post-doctoral fellowship (CIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Velten.

Additional information

Mention of a commercial or proprietary product does not constitute an endorsement by the USDA. USDA offers its programs to all eligible persons regardless of race, color, age, sex, or national origin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cazzonelli, C.I., Velten, J. An in vivo, luciferase-based, Agrobacterium-infiltration assay system: implications for post-transcriptional gene silencing. Planta 224, 582–597 (2006). https://doi.org/10.1007/s00425-006-0250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0250-z

Keywords

Navigation