Skip to main content
Log in

Expression of a peroxisome proliferator-activated receptor gene (xPPARα) from Xenopus laevis in tobacco (Nicotiana tabacum) plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In this work, we have genetically transformed tobacco (Nicotiana tabacum) plants with the peroxisome proliferator-activated receptor cDNA (xPPARα) from Xenopus laevis, which is a transcriptional factor involved in the peroxisomal proliferation and induction of fatty acid ß-oxidation in animal cells. Several transgenic lines were generated and one representative line (T) from the R2 generation was selected for further studies. Analysis of free fatty acids revealed that unsaturated fatty acids such as C16:2 and C16:3 were deficient in line T, whereas saturated fatty acids like C16:0, C18:0, and C20:0 were more abundant than in non-transformed plants. Acyl-CoA oxidase (ACOX) activity was assayed as a marker enzyme of ß-oxidation in crude leaf extracts and it was found that in line T there was a threefold increase in enzyme activity. We also found that the peroxisome population was increased and that catalase (CAT) activity was induced by clofibrate, a known activator of xPPARα protein, in leaves from line T. Taken together, these findings suggest that xPPARα is functional in plants and that its expression in tobacco leads to changes in general lipid metabolism and peroxisomal proliferation as reported in animal cells. Furthermore, it indicates that there is an endogenous ligand in tobacco cells able to activate xPPARα.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACOX:

Acyl-CoA oxidase

BSA:

Bovine serum albumin

ACDH:

Acyl-CoA dehydrogenase

CaMV:

Cauliflower mosaic virus

CAT:

Catalase

CTAB:

Hexadecyltrimethylammonium bromide

DAB:

3,3'-diaminobenzidine-HCl

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

npt II :

Neomycin phosphotransferase II gene

MS:

Murashige-Skoog plant growth medium

MSF:

Phenylmethanesulphonyl

PVP:

Polyvinylpolypyrrolidone

xPPARα:

Xenopus laevis peroxisome proliferator-activated receptor α

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    PubMed  CAS  Google Scholar 

  • An G (1987) Binary Ti vectors for plant transformation and promoter analysis. Methods Enzymol 153:292–305

    Article  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, More DD, Seidman JG, Smith JA, Struhl K (1991) Current protocols in molecular biology. Greene Publishing Associates Inc./Willey, Winston-Salem

    Google Scholar 

  • Blanquart C, Barbier O, Fruchart JC, Staels B, Glineur C (2003) Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 85:267–273

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu Rev Plant Physiol 49:311–343

    Article  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    Article  PubMed  CAS  Google Scholar 

  • Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrinol Rev 20:649–688

    Article  CAS  Google Scholar 

  • Dommes V, Kunau WH (1976) A convenient assay for acyl-CoA-dehydrogenases. Anal Biochem 71:201–225

    Article  Google Scholar 

  • Dreyer C, Krey G, Keller H, Givel F, Helftenbern G, Wahli W (1992) Control of the peroxisomal ß-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68:879–887

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt B (1983) Localization of ß-oxidation enzymes in peroxisomes isolated from nonfatty plant tissues. Planta 159:238–246

    Article  CAS  Google Scholar 

  • Graham IA, Eastmond PJ (2002) Pathways of straight and branched chain fatty acid catabolism in higher plants. Prog Lipid Res 41:156–181

    Article  PubMed  CAS  Google Scholar 

  • Gühnemann-Schäfer K, Kindl H (1995) The leaf peroxisomal form (MFP IV) of multifuncitonal protein functioning in fatty-acid ß-oxidation. Planta 196:642–646

    Article  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Nishimura M (2003) Entering a new era of research on plant peroxisomes. Curr Opin Plant Biol 6:577–882

    Article  PubMed  CAS  Google Scholar 

  • Green S (1995) PPAR: a mediator of peroxisome proliferator action. Mutat Res 333:101–109

    PubMed  CAS  Google Scholar 

  • Gutierrez-Ortega A, Avila-Moreno F, Saucedo-Arias LJ, Sanchez-Torres C, Gomez-Lim MA (2004) Expression of a single-chain human interleukin-12 gene in transgenic tobacco plants and functional studies. Biotechnol Bioeng 85:734–740

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Lea PJ (2002) The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms. Phytochemistry 60:651–674

    Article  PubMed  CAS  Google Scholar 

  • Johnson EF, Hsu MH, Savas U, Griffin KJ (2002) Regulation of P450 4A expression by peroxisome proliferator activated receptors. Toxicol 181–182:203–206

    Article  Google Scholar 

  • Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W (1993) Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferators activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci USA 90:2160–2164

    Article  PubMed  CAS  Google Scholar 

  • Li J, Biswas MG, Chao A, Russell DW, Chory J (1997) Conservation of function between mammalian and plant steroid 5 alpha-reductases. Proc Natl Acad Sci USA 94:3554–3559

    Article  PubMed  CAS  Google Scholar 

  • López-Gómez R, Gómez-Lim MA (1992) A method for extracting intact RNA from fruits rich in polysaccharides using ripe mango mesocarp. HortScience 27:440–442

    Google Scholar 

  • Marcus SL, Miyata KS, Zhang B, Subramani S, Rachubinski RA, Capone JP (1993) Diverse peroxisome proliferator-activated receptors bind to the peroxisome proliferator-responsive elements of the rat hydratase/dehydrogenase and fatty acyl-CoA oxidase genes but differentially induce expression. Proc Natl Acad Sci USA 90:5723–5727

    Article  PubMed  CAS  Google Scholar 

  • Mehendale HM (2000) PPARα: a key to the mechanism of hepatoprotection by clofibrate. Toxicol Sci 57:187–190

    Article  PubMed  CAS  Google Scholar 

  • Millar AA, Wrischer M, Kunst L (1998) Accumulation of very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology. Plant Cell 11:1889–1902

    Article  Google Scholar 

  • Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:472–497

    Article  Google Scholar 

  • Na HK, Surh YJ (2003) Peroxisome proliferator-activated receptor gamma (PPARγ) ligands as bifunctional regulators of cell proliferation. Biochem Pharmacol 66:1381–1391

    Article  PubMed  CAS  Google Scholar 

  • Palma JM, Garrido M, Rodríguez-García MI, del Río LA (1991) Peroxisome proliferation and oxidative stress mediated by activated oxygen species in plant peroxisomes. Arch Biochem Biophys 287:68–74

    Article  PubMed  CAS  Google Scholar 

  • Pastori G, del Río LA (1997) Natural senescence of pea leaves. Plant Physiol 113:411–418

    PubMed  CAS  Google Scholar 

  • Pinot F, Bosch H, Alayrac C, Mioskowski C, Vendais A, Durst F, Salaun JP (1993) W-hydroxylation of oleic acid in Vicia sativa microsomes. Plant Physiol 102:1313–1318

    PubMed  CAS  Google Scholar 

  • Polashock JJ, Chin CK, Martin CE (1992) Expression of the yeast Δ9 fatty acid desaturase in Nicotiana tabacum. Plant Physiol 100:894–901

    Article  PubMed  CAS  Google Scholar 

  • Qi C, Zhu Y, Reddy JK (2000) Peroxisome proliferator-activated receptors, coactivators, and downstream targets. Cell Biochem Biophys 32:187–204

    Article  PubMed  CAS  Google Scholar 

  • del Río LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jiménez A, López-Huertas E, Hernández JA (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200

    Article  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Palma JM, Corpas FJ, López-Huertas E, Romero-Puertas MC, McCarthy I (2002a) Peroxisomes, reactive oxygen metabolism, and stress-related enzyme activities. In: Baker A, Graham IA (eds) Plant peroxisomes. Biochemistry, cell biology and biotechnological appliations, Kluwer, Dordrecht, pp 221–258

    Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002b) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Palma JM, Corpas FJ, López-Huertas E, Romero-Puertas MC, McCarthy I (2002c) Peroxisomes, reactive oxygen metabolism, and stress-related enzyme activities. In: Baker A, Graham IA (eds) Plant Peroxisomes. Biochemistry, Cell Biology and Biotechnological Applications. Kluwer, Dordrecht, pp 221–258

    Google Scholar 

  • del Río LA, Corpas FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792

    Article  PubMed  CAS  Google Scholar 

  • Ruyter B, Andersen O, Dehli A, Ostlund-Farrants AK, Gjoen T, Thomassen MS (1997) Peroxisome proliferator activated receptors in Atlantic salmon (Salmo salar): effects on PPAR transcription and acyl-CoA oxidase activity in hepatocytes by peroxisome proliferators and fatty acids. Biochim Biophys Acta 1348:331–338

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sayanova O, Smith MA, Lapinskas P, Stobart AK, Dobson G, Christie WW, Shewry PR, Napier JA (1997) Expression of a borage desaturase cDNA containing a N-terminal cytochrome b5 domain results in the accumulation of high levels of a Δ6-desaturated fatty acids in transformed tobacco. Proc Natl Acad Sci USA 94:4211–4216

    Article  PubMed  CAS  Google Scholar 

  • Schardl CL, Byrd AD, Benzion G, Altschuler MA, Hildebrand DF, Hunt AG (1987) Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61:1–11

    Article  PubMed  CAS  Google Scholar 

  • Shay NF, Banz WJ (2005) Regulation of gene transcription by botanicals: novel regulatory mechanisms. Annu Rev Nutr 25:297–315

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Kawada T, Goto T, Yamamoto T, Taimatsu A, Matsui N, Kimura K, Saito M, Hosokawa M, Miyashita K, Fushiki T (2002) Dual action of isoprenols from herbal medicines on both PPARgamma and PPARalpha in 3T3-L1 adipocytes and HepG2 hepatocytes. FEBS Lett 514:315–322

    Article  PubMed  CAS  Google Scholar 

  • Tan NS, Michalik L, Desvergne B, Wahli W (2005) Multiple expression control mechanisms of peroxisome proliferator-activated receptors and their target genes. J Steroid Biochem Mol Biol 93:99–105

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Tijet N, Helvig C, Pinot F, Le Bouquin R, Lesot A, Durst F, Salaün JP, Benveniste I (1998) Functional expression in yeast and characterization of a clofibrate inducible plant cytochrome P-450 (CYP94A1) involved in cutin monomers synthesis. Biochem J 332:583–589

    PubMed  CAS  Google Scholar 

  • Torra IP, Chinetti G, Duval C, Fruchart JC, Staels B (2001) Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr Opin Lipidol 12:245–254

    Article  PubMed  CAS  Google Scholar 

  • Tsydendambaev VD, Christie WW, Brechany EY, Vereshchagin AG (2004) Identification of unusual fatty acids of four alpine plant species from the Pamirs. Phytochemistry 65:2695–2703

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Nemhauser JL, Geldner N, Hong F, Chory J (2005) Molecular mechanisms of steroid hormone signaling in plants. Annu Rev Cell Dev Biol 21:177–201

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Chin CK, Ho CT, Hwang CF, Polashock JJ, Martin CE (1996) Changes of fatty acids and fatty acid-derived flavor compounds by expressing the yeast Δ−9 desaturase gene in tomato. J Agric Food Chem 44:3399–3402

    Article  CAS  Google Scholar 

  • Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7:217–224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to CONACYT for a PhD scholarship to A.G.N.M. We thank Dr. W. Wahli for the kind gift of the cDNA derived from the xPPARα gene from Xenopus laevis. We also thank UNESCO for a travel fellowship to A.G.N.M. The electron microscopy analysis were carried out at the Centre of Scientific Instrumentation of the University of Granada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Gómez-Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nila, A.G., Sandalio, L.M., López, M.G. et al. Expression of a peroxisome proliferator-activated receptor gene (xPPARα) from Xenopus laevis in tobacco (Nicotiana tabacum) plants. Planta 224, 569–581 (2006). https://doi.org/10.1007/s00425-006-0246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0246-8

Keywords

Navigation