Planta

, Volume 224, Issue 3, pp 533–544 | Cite as

Molecular characterization of a seed transmitted clavicipitaceous fungus occurring on dicotyledoneous plants (Convolvulaceae)

  • Ulrike Steiner
  • Mahalia A. Ahimsa-Müller
  • Anne Markert
  • Sabine Kucht
  • Julia Groß
  • Nicole Kauf
  • Monika Kuzma
  • Monika Zych
  • Marc Lamshöft
  • Miroslawa Furmanowa
  • Volker Knoop
  • Christel Drewke
  • Eckhard Leistner
Original Article

Abstract

Ergoline alkaloids (syn. ergot alkaloids) are constituents of clavicipitaceous fungi (Ascomycota) and of one particular dicotyledonous plant family, the Convolvulaceae. While the biology of fungal ergoline alkaloids is rather well understood, the evolutionary and biosynthetic origin of ergoline alkaloids within the family Convolvulaceae is unknown. To investigate the possible origin of ergoline alkaloids from a plant-associated fungus, 12 endophytic fungi and one epibiotic fungus were isolated from an ergoline alkaloid-containing Convolvulaceae plant, Ipomoeaasarifolia Roem. & Schult. Phylogenetic trees constructed from 18S rDNA genes as well as internal transcribed spacer (ITS) revealed that the epibiotic fungus belongs to the family Clavicipitaceae (Ascomycota) whereas none of the endophytic fungi does. In vitro and in vivo cultivation on intact plants gave no evidence that the endophytic fungi are responsible for the accumulation of ergoline alkaloids in I. asarifolia whereas the epibiotic clavicipitaceous fungus very likely is equipped with the genetic material to synthesize these compounds. This fungus resisted in vitro and in vivo cultivation and is seed transmitted. Several observations strongly indicate that this plant-associated fungus and its hitherto unidentified relatives occurring on different Convolvulaceae plants are responsible for the isolated occurrence of ergoline alkaloids in Convolvulaceae. This is the first report of an ergot alkaloid producing clavicipitaceous fungus associated with a dicotyledonous plant.

Keywords

Ergoline alkaloids Ipomoea Turbina Plant–fungus association Seed transmittance Clavicipitaceae 

Abbreviations

ITS

Internal transcribed spacer

18S rDNA

Small subunit ribosomal DNA

SSCP

Single strand conformation polymorphism

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654CrossRefPubMedGoogle Scholar
  3. Bacon CW (1985) A chemically defined medium for the growth an synthesis of ergot alkaloids by species of Balansia. Mycologia 77:418–423CrossRefGoogle Scholar
  4. Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83CrossRefPubMedGoogle Scholar
  5. Boysen ME (1999) Molecular identification and quantification of the Penicillium roqueforti group. Doctoral Thesis (Swedish University of Agricultural Sciences, Uppsala, Sweden) ISSN 1401–6249Google Scholar
  6. Carlile MJ, Watkinson SC, Gooday GW (2001) The fungi. 2nd edn, Academic, San DiegoGoogle Scholar
  7. Cenis J (1992) Rapid extraction of fungal DNA for PCR amplification. Nucleic Acid Res 20:9Google Scholar
  8. Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:99–127CrossRefGoogle Scholar
  9. Coyle CM, Panaccione DG (2005) An ergot alkaloid gene and clustered hypothetical genes from Aspergillus fumigatus. Appl Environ Microbiol 71:3112–3118CrossRefPubMedGoogle Scholar
  10. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep1:19–21Google Scholar
  11. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basiodiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  12. Gentile A, Rossi MS, Cabral D, Craven KD, Schardl CL (2005) Origin, divergence, and phylogeny of epichloë endophytes of native Argentine grasses. Mol Phylogenet Evol 35:196–208CrossRefPubMedGoogle Scholar
  13. Gröger D, Floss HG (1998) Biochemistry of ergot alkaloids—achievements and challenges. In: Cordell GA (ed) The alkaloids, vol 50. Academic, San Diego, pp 171–218Google Scholar
  14. Gröger D, Mothes K, Floss HG, Weygand F (1963) Zur Biogenese von Ergolin-Derivaten in Ipomoea rubro-caerulea Hook. Z Naturforsch 18b:1123–1124Google Scholar
  15. Hofmann A, Tscherter H (1960) Isolierung von Lysergsäure-Alkaloiden aus der mexikanischen Zauberdroge Ololuiqui (Rivea corymbosa (L.) Hall. F.) Experientia XVI/9:414CrossRefGoogle Scholar
  16. Jenett-Siems K, Kaloga M, Eich E (1994) Ergobalansine/ergobalansinine, a proline-free peptide-type alkaloid of the fungal genus Balansia is a constituent of Ipomoea piurensis. J Nat Prod 57:1304–1306CrossRefGoogle Scholar
  17. Jenett-Siems K, Kaloga M, Eich E (2004) Ergobalansine/Ergobalasinine, a proline-free peptide type alkaloid of the fungal genus Balansia is a constituent of Ipomoea piurensis. J Nat Prod 67:2160CrossRefGoogle Scholar
  18. Kappe R, Fauser C, Okeke CN, Maiwald M (1996) Universal fungus-specific primer systems and group-specific hybridization oligonucleotides for 18SrDNA. Mycoses 39:25–30PubMedCrossRefGoogle Scholar
  19. Karnovsky MJ (1965) A formaldehyde–glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138Google Scholar
  20. Kucht S, Groß J, Hussein Y, Grothe T, Keller U, Basar S, König WA, Steiner U, Leistner E (2004) Elimination of ergoline alkaloids following treatment of Ipomoea asarifolia (Convolvulaceae) with fungicides. Planta 219:619–625 CrossRefPubMedGoogle Scholar
  21. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163CrossRefPubMedGoogle Scholar
  22. Lane GA, Christensen MJ, Miles CO (2000) Coevolution of fungal endophytes with grasses: the significance of secondary metabolites. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Dekker, New York, pp 341–388Google Scholar
  23. Latch GCM, Christensen MJ (1985) Artificial infection of grasses with endophytes. Ann Appl Biol 107:17–24CrossRefGoogle Scholar
  24. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  25. Ohmomo S, Sato T, Utagawa T, Abe M (1975) Isolation of festuclavine and three new indole alkaloids, roquefortine A, B and C from the cultures of Penicillium roqueforti. Agric Biol Chem 39:1333–1334Google Scholar
  26. Petrini O, Sieber TN, Toti L, Viret O (1992) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Toxins 1:185–186PubMedCrossRefGoogle Scholar
  27. Reddy PV, Bergen MS, Patel R, White JF Jr (1998) An examination of molecular phylogeny and morphology of the grass endophyte Balansia claviceps and similar species. Mycologia 90:108–117CrossRefGoogle Scholar
  28. Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs—effectiveness of surface sterilization methods. Mycol Res 97:1447–1450CrossRefGoogle Scholar
  29. Scott PM, Merrien M-A, Polonsky J (1976) Roquefortine and Isofumigaclavine A, metabolites from Penicillium roqueforti. Experientia 32:140–142CrossRefGoogle Scholar
  30. Spiering MS, Lane GA, Christensen MJ, Schmid J (2005) Distribution of the fungal endophyte Neotyphodium lolii is not a major determinant of the distribution of fungal alkaloids in Lolium perenne plants. Phytochemistry 66:195–202CrossRefPubMedGoogle Scholar
  31. Svitkina TM, Shevelev AA, Bershadsky AD, Gelfand VI (1984) Cytoskeleton of mouse embryo fibroblasts. Electron microscopy of platinum replicas. Eur J Cell Biol 34:64–74PubMedGoogle Scholar
  32. Tsai H-F, Wang H, Gebler JC, Poulter CD, Schardl CL (1995) The Claviceps purpurea gene encoding dimethylallyltryptophan synthase. The committed step for ergot alkaloid biosynthesis. Biochem Biophys Res Commun 216:119–125CrossRefPubMedGoogle Scholar
  33. Tudzynski P, Hölter K, Correia T, Arntz C, Grammel N, Keller U (1999) Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol Gen Genet 261:133–141CrossRefPubMedGoogle Scholar
  34. Tudzynski P, Correia T, Keller U (2001) Biotechnology and genetics of ergot alkaloids. Appl Microbiol Biotechnol 57:593–605CrossRefPubMedGoogle Scholar
  35. Unsöld IA, Li S-M (2005) Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus. Microbiology 151:1499–1505CrossRefPubMedGoogle Scholar
  36. Wang J, Machado C, Panaccione DG, Tsai H-F, Schardl CL (2004) The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genet Biol 41:189–198CrossRefPubMedGoogle Scholar
  37. White JF Jr, Bacon CW, Hywel-Jones NL , Spatafora JW (2003) Clavicipitalean fungi, evolutionary biology, chemistry, biocontrol, and cultural impacts. In: Bennett JW, Lemke PA (eds), Mycology series, vol 19, Dekker, New YorkGoogle Scholar
  38. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ulrike Steiner
    • 2
  • Mahalia A. Ahimsa-Müller
    • 1
  • Anne Markert
    • 1
  • Sabine Kucht
    • 1
  • Julia Groß
    • 1
  • Nicole Kauf
    • 1
  • Monika Kuzma
    • 3
  • Monika Zych
    • 3
  • Marc Lamshöft
    • 1
  • Miroslawa Furmanowa
    • 3
  • Volker Knoop
    • 4
  • Christel Drewke
    • 1
  • Eckhard Leistner
    • 1
  1. 1.Institut für Pharmazeutische Biologie der Universität BonnBonnGermany
  2. 2.Institut für Pflanzenkrankheiten der Universität BonnBonnGermany
  3. 3.Department of Biology and Pharmaceutical BotanyThe Medical University of WarsawWarsawPoland
  4. 4.Institut für Zelluläre und Molekulare Botanik der Universität Bonn BonnGermany

Personalised recommendations