Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology

Abstract

In the horticulturally important ornamental species Cyclamen persicum Mill., somatic embryogenesis is an efficient vegetative propagation method and the development of artificial seeds is an ultimate aim. This study aims at a systematic comparison of the proteomes of zygotic embryos, somatic embryos grown in liquid medium containing 30 or 60 g l−1 sucrose, germinating embryos of both types and endosperm in order to obtain novel insights into seed and germination physiology. Using high resolution two-dimensional isoelectric focussing/sodium dodecylsulfate polyacrylamide gel electrophoresis (2D IEF/SDS PAGE), 74% of the proteins expressed in zygotic embryos were found in similar abundance in somatic embryos grown in 60 g l−1 sucrose. Somatic embryos grown in 30 g l−1 sucrose accumulated fewer protein species than those grown in 60 g l−1. Selected proteins were identified following mass spectrometry (nano-LC-MS/MS). Four enzymes involved in glycolysis (UDP-glucose pyrophosphorylase, fructose bisphosphate aldolase, triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase GAPDH) were specifically induced in somatic embryos. 11S globulin proteins identified by MS were present in high levels in somatic embryos, zygotic embryos and endosperm, whereas 7S globulins were detected mainly in endosperm and zygotic embryos. These are the first storage proteins identified in C. persicum. Xyloglucans are known to be another group of seed storage compounds in C. persicum. Interestingly, xyloglucan endotransglycosylases were found to be highly expressed in endosperm tissue. We discuss the physiological implications of these observations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ACN:

Acetonitril

DTT:

Dithiothreitol

end:

Endosperm

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

MS:

Mass spectrometry

se:

Somatic embryos

SOD:

superoxide dismutase

ze:

Zygotic embryos

2,4-D:

2,4-dichlorophenoxyacetic acid

2iP:

6-(γ,γ-dimethylallylamino) purine

References

  1. Bongartz W (1999) Cyclamen. Thalacker-Medien, Braunschweig, pp 42-50

    Google Scholar 

  2. Braccini I, Du-Penhoat CH, Michon V, Goldberg R, Clochard M, Jarvis MC, Huang ZH, Gage DA (1995) Structural analysis of cyclamen seed xyloglucan oligosaccharides using cellulase digestion and spectroscopic methods. Carbohydr Res 276:167–181

    Article  PubMed  CAS  Google Scholar 

  3. Buckeridge MS, Santos HP Tiné MAS (2000) Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiol Biochem 38:141–156

    Article  CAS  Google Scholar 

  4. Castro AJ, Carapito C, Zorn N, Magne C, Leize E, Van Dorsselaer A, Clement C (2005) Proteomic analysis of grapevine (Vitis vinifera L.) tissues subjected to herbicide stress. Exp Bot 56:2783–95

    Article  CAS  Google Scholar 

  5. Ciereszko I, Johansson H, Kleczkowski LA (2001) Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis. Biochem J 254:67–72

    Article  Google Scholar 

  6. Ciereszko I, Johansson H, Kleczkowski LA (2005) Interactive effects of phosphate deficiency, sucrose and light/dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis. J Plant Physiol 162:343–353

    Article  PubMed  CAS  Google Scholar 

  7. Crouch ML (1982) Non-zygotic embryos of Brassica napus L. contain embryo-specific storage proteins. Planta 156:520–524

    Article  CAS  Google Scholar 

  8. Dodeman VL, Guilloux ML, Ducreux G, de Vienne D (1998) Somatic and zygotic embryos of Daucus carota L. display different protein patterns until conversion to plants. Plant Cell Physiol 39:1104–1110

    PubMed  CAS  Google Scholar 

  9. Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2002) Proteomics of arabidopsis seed germination: a comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129:823–837

    Article  PubMed  CAS  Google Scholar 

  10. Hakman I, Stabel P, Engström P, Eriksson T (1990) Storage protein accumulation during zygotic and somatic embryo development in Picea abies (Norway spruce). Physiol Plant 80:441–445

    Article  CAS  Google Scholar 

  11. Hayashi T (1989) Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol 40:139–168

    Article  CAS  Google Scholar 

  12. Heintz D, Wurtz V, High AA, Van Dorsselaer A, Reski R, Sarnighausen E (2004) An efficient protocol for the identification of protein phosphorylation in a seedless plant, sensitive enough to detect members of signalling cascades. Electrophoresis 25:1149–1159

    Article  PubMed  CAS  Google Scholar 

  13. Imin N, De Jong J, Mathesius U, van Noorden G, Saeed NA, Wang XD, Rose RJ, Rolfe BG (2004) Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts. Proteomics 4:1883–1896

    Article  PubMed  CAS  Google Scholar 

  14. Kiviharju E, Tuominen U, Törmälä T (1992) The effect of explant material on somatic embryogenesis of Cyclamen persicum Mill. Plant Cell Tissue Organ Cult 28:187–194

    Article  Google Scholar 

  15. Klimaszewska K, Morency F, Jones-Overton C, Cooke J (2004) Accumulation pattern and identification of seed sorage proteins in zygotic embryos of Pinus strobus and in somatic embryos from different maturation treatments. Physiol Plant 121:682–690

    Article  CAS  Google Scholar 

  16. Kooiman P (1960) On the occurrence of amyloids in plant seeds. Acta Bot Neerl 9:208–219

    CAS  Google Scholar 

  17. Kreuger M, Postma E, Brouwer Y, Van Holst GJ (1995) Somatic embryogenesis of Cyclamen persicum in liquid medium. Physiol Plant 94:605–612

    Article  CAS  Google Scholar 

  18. Krochko JM, Bantroch DJ, Greenwood JS, Bewley JD (1994) Seed storage proteins in developing somatic embryos of alfalfa: defects in accumulation compared to zygotic embryos. J Exp Bot 45:699–708

    Article  CAS  Google Scholar 

  19. Madakadze RM, Krochko JE, Senaratna T (2000) Identification and characterization of storage proteins in zygotic and somatic embryos of geranium (Pelargonium x hortorum). J Am Soc Hortic Sci 125:525–529

    CAS  Google Scholar 

  20. Mihr C, Braun HP (2003) Proteomics in plant biology. In: Conn PM (ed) Handbook of proteomic methods, Humana Press, Totowa, pp 409–416

    Chapter  Google Scholar 

  21. Morcillo F, Alberlene-Bertossi F, Hamon S, Duval Y (1998) Accumulation of storage protein and 7S globulins during zygotic and somatic embryo development in Elais guineensis. Plant Physiol Biochem 36:509–514

    Article  CAS  Google Scholar 

  22. Mordhorst AP, Toonen MAJ, de Vries SC (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576

    Article  Google Scholar 

  23. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  24. Neuhoff V, Stamm R, Eibl H (1985) Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6:427–448

    Article  CAS  Google Scholar 

  25. Neuhoff V, Stamm R, Pardowitz I, Arold N, Ehrhardt W, Taube D (1990) Essential problems in quantification of proteins following colloidal staining with Coomassie Brilliant Blue dyes in polyacrylamide gels, and their solution. Electrophoresis 11:101–117

    Article  PubMed  CAS  Google Scholar 

  26. Otani M, Shimada T (1991) Somatic embryogenesis and plant regeneration from Cyclamen persicum Mill. leaf cultures. Plant Tissue Cult Lett 8:121–123

    Google Scholar 

  27. Pramanik SK, Krochko JE, Bewley JD (1992) Distribution of cytosolic mRNAs between polysomal and ribonucleoprotein complex fractions in alfalfa embryos—stage-specific translational repression of storage protein synthesis during early somatic embryo development. Plant Physiol 99:1590–1596

    PubMed  CAS  Article  Google Scholar 

  28. Puigderrajols P, Jofré A, Mir G, Pla M, Verdaguer D, Huguet G, Molinas M (2002) Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos. J Exp Bot 53:1445–1452

    Article  PubMed  CAS  Google Scholar 

  29. Rose JKC, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new uniform nomenclature. Plant Cell Physiol 43:1421–1435

    Article  PubMed  CAS  Google Scholar 

  30. Sarnighausen E, Wurtz V, Heintz D, Van Dorsselaer A, Reski R (2004) Mapping of the Physcomitrella patens proteome. Phytochemistry 65:1589–607

    Article  PubMed  CAS  Google Scholar 

  31. Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  32. Schwenkel HG (2001) Introduction: Botany, Economic Importance, Cultivars, Micropropagation of C. persicum. In: Schwenkel HG (ed) Reproduction of Cyclamen persicum Mill. through somatic embryogenesis using suspension culture systems. European Communities, pp 3–7

  33. Schwenkel HG, Winkelmann T (1998) Plant regeneration via somatic embryogenesis from ovules of Cyclamen persicum Mill. Plant Tissue Cult Biotechnol 4:28–34

    Google Scholar 

  34. Seyring M, Hohe A (2005) Induction of desiccation-tolerance in somatic embryos of Cyclamen persicum Mill. J Hortic Sci Biotechnol 80:65–69

    Google Scholar 

  35. Shevchenko A, Sunyaev S, Loboda A, Shevchenko A, Bork P, Ens W, Standing KG (2001) Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal Chem 73:1917–26

    Article  PubMed  CAS  Google Scholar 

  36. Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structure and biosynthesis. Plant Cell 7:945–956

    Article  PubMed  CAS  Google Scholar 

  37. Takamura T, Miyajima I, Matsuo E (1995) Somatic embryogenesis of Cyclamen persicum Mill. ‘Anneke’ from aseptic seedlings. Plant Cell Rep 15:22–25

    Article  CAS  Google Scholar 

  38. Tetteroo FAA, Hoekstra FA, Karssen CM (1995) Induction of complete desiccation tolerance in carrot (Daucus carota L.) embryoids. J Plant Physiol 145:349–356

    CAS  Google Scholar 

  39. Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003): clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    Article  PubMed  CAS  Google Scholar 

  40. Thijssen MH, Spoelstra P, Emons AC (1996) Immunodetection and immunolocalization of globulin storage proteins during zygotic and somatic embryo development in Zea mays. Physiol Plant 98:539–549

    Article  CAS  Google Scholar 

  41. Werhahn W, Braun HP (2002) Biochemical dissection of the mitochondrial proteome from Arabidopsis thaliana by three-dimensional gel electrophoresis. Electrophoresis 23:640–646

    Article  PubMed  CAS  Google Scholar 

  42. Wicart G, Mouras A, Lutz A (1984) Histological study of organogenesis and embryogenesis in Cyclamen persicum tissue cultures: evidence for a single organogenetic pattern. Protoplasma 119:159–167

    Article  Google Scholar 

  43. Winkelmann T, Serek M (2005) Genotypic differences in callus formation and regeneration of somatic embryos in Cyclamen persicum Mill. Euphytica 144:109–116

    Article  CAS  Google Scholar 

  44. Winkelmann T, Hohe A, Schwenkel HG (1998) Establishing embryogenic suspension cultures in Cyclamen persicum ‘Purple Flamed’. Adv Hortic Sci 12:25–30

    Google Scholar 

  45. Winkelmann T, Meyer L, Serek M (2004a) Desiccation of somatic embryos of Cyclamen persicum Mill. J Hortic Sci Biotechnol 79:479–483

    Google Scholar 

  46. Winkelmann T, Meyer L, Serek M (2004b) Germination of encapsulated somatic embryos of Cyclamen persicum. HortScience 39:1093–1097

    Google Scholar 

  47. Zhu D, Scandalios JG (1993) Maize mitochondrial manganese superoxide dismutases are encoded by a differentially expressed multigene family. Proc Natl Acad Sci 90:9310–9314

    PubMed  Article  CAS  Google Scholar 

  48. Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dagmar Lewejohann and Annette Steding for their excellent technical assistance, and Professor David Collinge (The Royal Veterinary and Agricultural University in Copenhagen, Denmark) for linguistic editing of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Traud Winkelmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Winkelmann, T., Heintz, D., Van Dorsselaer, A. et al. Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta 224, 508–519 (2006). https://doi.org/10.1007/s00425-006-0238-8

Download citation

Keywords

  • Endosperm
  • Mass spectrometry
  • Ornamental plant
  • Storage proteins
  • Two-dimensional polyacrylamide gel electrophoresis
  • Xyloglucan endotransglycosylase