Skip to main content
Log in

Non-lethal freezing effects on seed degreening in Brassica napus

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The effects of a non-lethal freezing stress on chlorophyll content, moisture level and distribution, and abscisic acid (ABA) levels were examined in siliques and seeds of Brassica napus (canola). A non-lethal freezing stress resulted in the retention of chlorophyll in seed at harvest that was most pronounced for seeds 28, 32 and 36 days after flowering (DAF). This increase was primarily due to an increased retention of chlorophyll a relative to chlorophyll b. Chlorophyll retention in seeds exposed to a non-lethal freezing stress correlated with an increased ABA catabolism, as measured 1, 3 or 7 days after the stress treatment. Although the non-lethal freezing stress had no significant effect on moisture content in seeds of siliques stressed at 28–44 DAF, moisture distribution, as viewed by magnetic resonance imaging, showed an uneven drying of 32 and 40 DAF siliques after exposure to the non-lethal freezing stress. Moisture was initially lost more rapidly from the silique wall between seeds, than in control non-stressed siliques. Increased moisture loss was not due to structural changes in the vasculature of the silique/seed of stressed tissues. These results are consistent with the hypothesis that a non-lethal freezing stress-induced decrease in ABA level, during seed maturation, effects an inhibition of normal chlorophyll a catabolism resulting in mature but green B. napus seed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

DAF:

Days after flowering

References

  • Ackerson RC (1984) Abscisic acid and precocious germination in soybeans. J Expt Bot 35:414–421

    Article  CAS  Google Scholar 

  • Asokanthan PS, Johnson RW, Griffith M, Krol M (1997) The photosynthetic potential of canola embryos. Physiol Plant 101:353–360

    Article  CAS  Google Scholar 

  • Balsevich JJ, Cutler AJ, Lamb N, Friesen LJ, Kurz EU, Perras MR, Abrams SR (1994) Response of cultured maize cells to (+)-abscisic acid, (−)-abscisic acid, and their metabolites. Plant Physiol 106:135–142

    PubMed  CAS  Google Scholar 

  • Balsevich JJ, Bishop G, Jacques SL, Hogge LR, Olson DJH, Laganiere N (1996) Preparation and analysis of some acetosugar esters of abscisic acid and derivatives. Can J Chem 74:238–245

    Article  CAS  Google Scholar 

  • Chang YC, Walling LL (1991) Abscisic acid negatively regulates expression of chlorophyll a/b binding protein genes during soybean embryogeny. Plant Physiol 97:1260–1264

    PubMed  CAS  Google Scholar 

  • Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross ARS, Kermode AR (2003) Metabolic profiling of four classes of plant hormones and their major metabolites by liquid chromatography electrospray tandem mass spectrometry: an analysis of hormone turnover associated with thermodormancy and germination of lettuce (Lactuca sativa L.) seeds. Plant J 35:405–417

    Article  PubMed  CAS  Google Scholar 

  • Cutler AJ, Rose PA, Squires TM, Loewen MK, Shaw AC, Quail JW, Krochko JE, Abrams SR (2000) Inhibitors of abscisic acid 8′-hydroxylase. Biochemistry 39:13614–13624

    Article  PubMed  CAS  Google Scholar 

  • Feurtado JA, Ambrose SJ, Cutler AJ, Ross ARS, Abrams SR, Kermode AR (2004) Dormancy termination of western white pine (Pinus monticola Dougl. Ex. D. Don) seeds is associated with changes in ABA metabolism. Planta 218:630–639

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell S15–S45

  • Fong F, Smith JD, Koehler DE (1983) Early events in maize seed development. Plant Physiol 73:899–901

    PubMed  CAS  Google Scholar 

  • Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell 7:373–385

    Article  PubMed  CAS  Google Scholar 

  • Goldberg RB, de Paiva G, Yafegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614

    Article  PubMed  CAS  Google Scholar 

  • Green BR, Singh S, Babic I, Bladen C, Johnson-Flannagan AM (1998) Relationship of chlorophyll, seed moisture and ABA levels in the maturing Brassica napus seed and effect of a mild freezing stress. Physiol Planta 104:125–133

    Article  CAS  Google Scholar 

  • Hill RD, Liu JH, Durnin D, Lamb N, Shaw A, Abrams SR (1995) Abscisic acid structure–activity relationships in barley aleurone layers and protoplasts (biological activity of optically active, oxygenated abscisic acid analogs). Plant Physiol 108:573–579

    PubMed  CAS  Google Scholar 

  • Hoad GV (1995) Transport of hormones in the phloem of higher plants. Plant Growth Regul 16:173–182

    Article  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New Spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  • Johnson-Flanagan AM, Thiagarajah MR (1990) Degreening of canola (Brassica napus, cultivar Westar) embryos under optimum conditions. J Plant Physiol 136:180–186

    CAS  Google Scholar 

  • Johnson-Flanagan AM, Thiagarajah MR, Pomeroy MK (1991) The impact of freezing during maturation on storage products in canola seeds. Physiol Planta 81:301–308

    Article  CAS  Google Scholar 

  • Johnson-Flanagan AM, Huiwen Z, Geng X-M, Brown DCW, Nykiforuk C, Singh J (1992) Frost, abscisic acid and desiccation hasten embryo development in Brassica napus. Plant Physiol 99:700–706

    PubMed  CAS  Google Scholar 

  • Johnson-Flanagan AM, Go N, Sun F, Singh J, Robert L, Konschuh MN (1999) Antisense RNA to decrease the green seed problem in canola. In: New horizons for an old crop, Proceedings of the 10th International Rapeseed Congress, Canberra, Australia

  • Johnson RW, Asokanthan PS, Griffiths M (1997) Water and sucrose regulate canola embryo development. Physiol Planta 101:361–366

    Article  CAS  Google Scholar 

  • Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T (2005) LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol 46:399–406

    Article  PubMed  CAS  Google Scholar 

  • Karssen CM, Brinkhorst-van der Swan DLC, Breekland AE, Koornneef M (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies of abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157:158–165

    Article  CAS  Google Scholar 

  • Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997

    Article  PubMed  CAS  Google Scholar 

  • Krochko JE, Abrams GD, Loewen MK, Abrams SR, Cutler AJ (1998) (+)-Abscisic acid 8′-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 118:849–860

    Article  PubMed  CAS  Google Scholar 

  • Lamb N, Wahab N, Rose PA, Shaw AC, Abrams SR, Cutler AJ, Smith PJ, Gusta LV, Ewan B (1996) Synthesis, metabolism and biological activity of a deuterated analogue of the plant hormone S-(+)-abscisic acid. Phytochemistry 41:23–28

    Article  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2003) ABA action and interactions in seeds. Trends Plant Sci 8:213–223

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Naito S, McCourt P (1992) A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant J 2:435–441

    Article  CAS  Google Scholar 

  • Nambara E, Keith K, McCourt P, Naito S (1995) A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis thaliana. Development 121:629–636

    CAS  Google Scholar 

  • Nelson LAK, Shaw AC, Abrams SR (1991) Synthesis of (+)-, (-)-, and (+/−)-7′-hydroxy abscisic acid. Tetrahedron 47:3259–3327

    Article  CAS  Google Scholar 

  • Ooms JJJ, Léon-Kloosterziel KM, Bartels D, Koornneef M, Karssen CM (1993) Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana. A comparative study using abscisic acid-insensitive abi3 mutants. Plant Physiol 102:1185–1191

    PubMed  CAS  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    Article  PubMed  CAS  Google Scholar 

  • Parcy F, Valon C, Kohara A, Miséra S, Giraudat J (1997) The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. Plant Cell 9:1265–1277

    Article  PubMed  CAS  Google Scholar 

  • Phillips J, Artsaenko O, Fiedler U, Horstmann C, Mock H-P, Müntz K, Conrad U (1997) Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J 16:4489–4496

    Article  PubMed  CAS  Google Scholar 

  • Robichaud CS, Wong J, Sussex IM (1980) Control of in vivo growth of vivaporous embryo mutants of maize by abscisic acid. Dev Gen 1:325–330

    Article  CAS  Google Scholar 

  • Rose PA, Cutler AJ, Irvine NM, Shaw AC, Squires TM, Loewen MK, Abrams SR (1997) 8′-Acetylene ABA: an irreversible inhibitor of ABA 8′-hydroxylase. Bioorg Med Chem Lett 7:2543–2546

    Article  CAS  Google Scholar 

  • Ross AR, Ambrose SJ, Cutler AJ, Feurtado JA, Kermode AR, Nelson K, Zhou R, Abrams SR (2004) Determination of endogenous and supplied deuterated abscisic acid in plant tissues by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry with multiple reaction monitoring. Anal Biochem 329:324–333

    Article  PubMed  CAS  Google Scholar 

  • Ruuska SA, Schwender J, Ohlrogge JB (2004) The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol 136:2700–2709

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449

    Article  PubMed  CAS  Google Scholar 

  • Santos Mendoza M, Dubreucq B, Miquel M, Caboche M, Lepiniec L (2005) LEAFY COTYLEDON2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett 579:4666–4670

    PubMed  CAS  Google Scholar 

  • Squires TM, Gruwel MLH, Zhou R, Sokhansanj S, Abrams SR, Cutler AJ (2003) Dehydration and dehiscence in siliques of Brassica napus and Brassica rapa. Can J Bot 81:248–254

    Article  Google Scholar 

  • Thies W (1970) Chloroplast development and biogenesis of linolenic acid in ripening cotyledons of rapeseed. In: International conference on the science, technology and marketing of rapeseed and rapeseed products, St. Adele, Quebec, Proceedings, Rapeseed Association of Canada, Ottawa, pp 348–356

  • Tsang EW, Yang J, Chang Q, Nowak G, Kolenovsky A, McGregor DI, Keller W (2003) Chlorophyll reduction in the seed of Brassica napus with a glutamate 1-semialdehyde aminotransferase antisense gene. Plant Mol Biol 51:191–201

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Mambelli S, Setter TL (2002) Abscisic acid catabolism in maize kernels in response to water deficit at early endosperm development. Ann Bot 90:623–360

    Article  PubMed  CAS  Google Scholar 

  • Ward K, Scarth R, Daun J, Vessey JK (1995) Chlorophyll degradation in summer oilseed rape and summer turnip rape during seed ripening. Can J Plant Sci 75:413–420

    Google Scholar 

  • Zeevaart JAD, Milborrow BV (1976) Metabolism of abscisic acid and the occurrence of epi-dihydrophaseic acid in Phaseolus vulgaris. Phytochemistry 15:493–500

    Article  CAS  Google Scholar 

  • Zhou R, Squires TM, Ambrose SJ, Abrams SR, Ross ARS, Cutler AJ (2003) Rapid extraction of ABA and its metabolites for liquid chromatography-tandem mass spectrometry analysis. J Chromatogr A 1010:75–85

    Article  PubMed  CAS  Google Scholar 

  • Zhou R, Cutler AJ, Ambrose SJ, Galka MM, Nelson KM, Squires TM, Loewen MK, Jadhav AS, Ross ARS, Taylor DC, Abrams SR (2004) A new abscisic acid catabolic pathway. Plant Physiol 134:361–369

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Abrams GD, Barton DL, Taylor DC, Pemeroy MK, Abrams SR (1995) Induction of lipid and oleosin biosynthesis by (+)-abscisic acid and its metabolites in microspore-derived embryos of Brassica napus L., cv Reston. Plant Physiol 108:563–571

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Larry Gusta for his helpful advice on the freezing protocol. This research was supported by Natural Science and Engineering Research Council Strategic Grant to Abrams and Bonham-Smith.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.C. Bonham-Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonham-Smith, P., Gilmer, S., Zhou, R. et al. Non-lethal freezing effects on seed degreening in Brassica napus . Planta 224, 145–154 (2006). https://doi.org/10.1007/s00425-005-0203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0203-y

Keywords

Navigation