Skip to main content
Log in

Characterisation of disproportionating enzyme from wheat endosperm

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Disproportionating enzyme or D-enzyme (EC 2.4.1.25) is an α-1,4 glucanotransferase which catalyses cleavage and transfer reactions involving α-1,4 linked glucans altering (disproportionating) the chain length distribution of pools of oligosaccharides. While D-enzyme has been well characterised in some plants, e.g. potato and Arabidopsis, very little is known about its abundance and function in cereals which constitute the major source of starch worldwide. To address this we have investigated D-enzyme in wheat (Triticum aestivum). Two putative D-enzyme cDNA clones have been isolated from tissue-specific cDNA libraries. TaDPE1-e, from an endosperm cDNA library, encodes a putative polypeptide of 575 amino acid residues including a predicted transit peptide of 41 amino acids. The second cDNA clone, TaDPE1-l, from an Aegilops taushii leaf cDNA library, encodes a putative polypeptide of 579 amino acids including a predicted transit peptide of 45 amino acids. The mature polypeptides TaDPE1-e and TaDPE1-l were calculated to be 59 and 60 kDa, respectively, and had 96% identity. The putative polypeptides had significant identity with deduced D-enzyme sequences from corn and rice, and all the expected conserved residues were present. Protein analysis revealed that D-enzyme is present in the amyloplast of developing endosperm and in the germinating seeds. D-enzyme was partially purified from wheat endosperm and shown to exhibit disproportionating activity in vitro by cleaving maltotriose to produce glucose as well as being able to use maltoheptaose as the donor for the addition of glucans to the outer chains of glycogen and amylopectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DP:

Degree of polymerisation

dpa:

Days post anthesis

GBSS:

Granule bound starch synthase

References

  • Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233

    Article  PubMed  CAS  Google Scholar 

  • Boos W, Shuman H (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism and regulation. Microbiol Mol Biol Rev 62:204–229

    PubMed  CAS  Google Scholar 

  • Bradford CD (1976) A rapid and sensitive method for quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:243–254

    Article  Google Scholar 

  • Chia T, Thorneycroft D, Chapple A, Messerli G, Chen J, Zeeman SC, Smith SM, Smith AM (2004) A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant J 37:853–863. DOI 10.1104/pp.103.038026

    Google Scholar 

  • Colleoni C, Dauvillee D, Mouille G, Buleon A, Gallant D, Bouchet B, Morell MK, Samuel M, Delrue B, d’Hulst C, Bliard C, Nuzillard JM, Ball S (1999a) Genetic and biochemical evidence for the involvement of a-1,4 glucanotransferases in amylopectin synthesis. Plant Physiol 120:993–1003

    Article  CAS  Google Scholar 

  • Colleoni C, Dauvillee D, Mouille G, Morell MK, Samuel M, Slomiany MC, Lienard L, Wattebled F, d’Hulst C, Ball S (1999b) Biochemical characterisation of the Chlamydomonas reinhardtii α-1,4 glucanotransferase supports a direct function in amylopectin biosynthesis. Plant Physiol 120:1005–1014

    Article  CAS  Google Scholar 

  • Critchley J, Zeeman S, Takaha T, Smith AM, Smith SM (2001) A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis. Plant J 26:89–100. DOI 10.1046/j.1365-313X.2001.01012.x

    Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    PubMed  CAS  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Harlow E, Lane D (1999) Using antibodies a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Whelan GJ (1969) The action pattern of D-enzyme, a transmaltodextrinylase from potato. Carbohyd Res 9:483–490

    Article  CAS  Google Scholar 

  • Kossmann J, Lloyd J (2000) Understanding and influencing starch biochemistry. Crit Rev Plant Sci 19:171–226

    Article  CAS  Google Scholar 

  • Kurata N, Moore G, Nagamura Y, Foote T, Yano M, Minobe Y, Gale MD (1994) Conservation of genome structure between rice and wheat. Nat Biotech 12:276–278

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lagudah ES, Appels R, McNeil D (1991) The Nor-D3 locus of Triticum tauschii: natural variation and genetic linkage to markers in chromosome 5. Genome 34:387–395

    CAS  Google Scholar 

  • Lagudah ES, Moullet O, Appels R (1997) Map based cloning of a gene sequence encoding a nucleotide binding domain and leucine rich region at the Cre3 nematode resistance locus of wheat. Genome 40:659–665

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Rahman S, Kosar-Hashemi B, Mouille G, Appels R, Morell MK (1999a) Cloning and characterisation of a gene encoding wheat starch synthase I. Theor App Genet 98:1208–1216

    Article  CAS  Google Scholar 

  • Li Z, Chu X S, Mouille G, Yan LL, Kosar-Hashemi B, Hey S, Napier J, Shewry P, Clarke B, Appels R, Morell MK, Rahman S (1999b) The localisation and expression of the class II starch synthase of wheat. Plant Physiol 120:1147–1155

    Article  CAS  Google Scholar 

  • Li Z, Kosar-Hashemi B, Rahman S, Clarke B, Gale KR, Appels R, Morell MK, Mouille G (2000) The structure and expression of the wheat starch synthase III gene. Motifs in the expressed gene define the lineage of the starch synthase III gene family. Plant Physiol 123:613–624

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JR, Blennow A, Burhenne K, Kossmann J (2004) Repression of a novel isoform of disproportionating enzyme (stDPE2) in potato leads to inhibition of starch degradation in leaves but not tubers stored at low temperature. Plant Physiol 134:1347–1354. DOI 10.1104/pp.103.038026

    Google Scholar 

  • Lloyd JR, Kossmann J, Ritte G (2005) Leaf starch degradation comes out of the shadows. Trends Plant Sci 10:130–137. DOI: 10.1016/j.tplants.2005.01.001

    Google Scholar 

  • Lu Y, Sharkey TD (2004) The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta 218:466–473. DOI 10.1007/s00425-003-1127-z

    Google Scholar 

  • Moullet O, Zhang H-B, Lagudah ES (1999) Construction and characterisation of a large insert DNA library from the D genome of wheat. Theor App Genet 99:305–313

    Article  Google Scholar 

  • O’Shea MG, Morell MK (1996) High resolution slab gel electrophoresis of 8-amino-1,3,6-pyrenetrisulfonic acid (APTS) tagged oligosaccharides using a DNA sequencer. Electrophoresis 17:681–688

    Article  PubMed  CAS  Google Scholar 

  • Peat S, Whelan WJ, Rees WR (1956) The enzymic synthesis and degradation of starch. Part XX. The disproportionating enzyme (D-enzyme) of the potato. J Chem Soc 1956:44–53

    Article  Google Scholar 

  • Przylas I, Tomoo K, Terada Y, Takaha T, Fujii K, Saenger W, Straeter N (2000) Crystal structure of amylomaltase from Thermus aquaticus, a glycosyltransferase catalysing the production of large cyclic glucans. J Mol Biol 296:873–886

    Article  PubMed  CAS  Google Scholar 

  • Rahman S, Abrahams S, Abbott D, Mukai Y, Samuel M, Morell MK, Appels R (1997) A complex arrangement of gene at a starch branching enzyme I locus in the D genome donor of wheat. Genome 40:465–474

    Article  PubMed  CAS  Google Scholar 

  • Rahman S, Li Z, Abrahams S, Abbott D, Appels R, Morell MK (1999) Characterisation of a gene encoding wheat endosperm starch branching enzyme-I. Theor App Genet 98:156–163

    Article  CAS  Google Scholar 

  • Rahman S, Regina A, Li Z, Mukai Y, Yamamoto M, Kosar-Hashemi B, Abrahams S, Morell MK (2001) Comparison of starch branching enzyme genes reveals evolutionary relationships among isoforms: characterisation of a gene for starch branching enzyme IIa from the wheat D genome donor Aegilops tauschii. Plant Physiol 125:1314–1324

    Article  PubMed  CAS  Google Scholar 

  • Rahman S, Y Nakamura Y, Li Z, Clarke B, Fujita N, Mukai Y, Yamamoto M, Regina A, Tan Z, Kawasaki S, Morell MK (2003) The sugary-type isoamylase gene from rice and Aegilops tauschii: characterization and comparison with maize and Arabidopsis. Genome 46:496–506. DOI: 10.1139/G03-130

  • Sears ER, Miller TE (1985) The history of Chinese Spring wheat. Cereal Res Commun 13:261–263

    Google Scholar 

  • Smith AM (2001) The biosynthesis of starch granules. Biomacromolecules 2:335–341

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degredation. Ann Rev Plant Biol 56:73–98. DOI: 10.1146/annurev.arplant.56.032604.144257

    Google Scholar 

  • Takaha T, Yanase M, Okada S, Smith SM (1993) Disproportionating enzyme (4-alpha-glucanotransferase - EC 2.4.1.25) of potato—purification, molecular cloning, and potential role in starch metabolism. J Biol Chem 268:1391–1396

    PubMed  CAS  Google Scholar 

  • Takaha T, Yanase M, Takata H, Okada S, Smith SM (1996) Potato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucan. J Biol Chem 271:2902–2908

    Article  PubMed  CAS  Google Scholar 

  • Takaha T, Critchley J, Okada S, Smith SM (1998a) Normal starch content and composition in tubers of antisense potato plants lacking D-enzyme (4-alpha-glucanotransferase). Planta 205:445–451

    Article  CAS  Google Scholar 

  • Takaha T, Yanase M, Takata H, Okada S, Smith SM (1998b) Cyclic glucans produced by the intramolecular transglycosylation activity of potato D-enzyme on amylopectin. Biochem Biophys Res Comm 247:493–497

    Article  CAS  Google Scholar 

  • Takaha T, Smith SM (1999) The functions of 4-alpha-glucanotransferases and their use for the production of cyclic glucans. Biotechnol Genetic Eng Rev 16:257–280

    CAS  Google Scholar 

  • Tetlow IJ, Davies EJ, Vardy KA, Bowsher CG, Burrell MM, Emes MJ (2003) Subcellular localization of ADPglucose pyrophosphorylase in developing wheat endosperm and analysis of the properties of a plastidial isoform. J Exp Bot 54:715–725. DOI: 10.1093/jxb/erg088

    Google Scholar 

  • Tetlow IJ, Morell MK, Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55:2131–2145. DOI: 10.1093/jxb/erh248

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc of Nat Acad Sci 76:4350–4354

    Article  CAS  Google Scholar 

  • Turner M, Mukai Y, Leroy P, Charef B, Appels R, Rahman S (1999) The Ha locus of wheat: identification of a polymorphic region for tracing grain hardness in crosses. Genome 42:1242–1245

    Article  PubMed  CAS  Google Scholar 

  • Vrinten PL, Nakamura T (2000) Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol 122:255–264

    Article  PubMed  CAS  Google Scholar 

  • Xavier KB, Peist R, Kossmann M, Boos W, Santos H (1999) Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterisation of key enzymes. J Bacteriol 181:3358–3367

    PubMed  CAS  Google Scholar 

  • Yan L, Bhave M, Fairclough R, Konik C, Rahman S, Appels R (2000) The genes encoding granule-bound starch synthases at the waxy loci of the A, B and D progenitors of wheat. Genome 43:264–272

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

NB was the recipient of a postgraduate scholarship from Biogemma. Dr Kevin Gale, CSIRO Plant Industry, is thanked for assistance with design of the synthetic peptide, and Malcolm Blundell for assistance with generation of the antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crispin A. Howitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bresolin, N.S., Li, Z., Kosar-Hashemi, B. et al. Characterisation of disproportionating enzyme from wheat endosperm. Planta 224, 20–31 (2006). https://doi.org/10.1007/s00425-005-0187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0187-7

Keywords

Navigation