Skip to main content
Log in

Degradation of ureidoglycolate in French bean (Phaseolus vulgaris) is catalysed by a ubiquitous ureidoglycolate urea-lyase

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A ureidoglycolate-degrading activity was analysed in different tissues of French bean (Phaseolus vulgaris L.) plants during development. Activity was detected in all the tissues analysed, although values were very low in seeds before germination and in cotyledons. After radicle emergence, the activity increased due to high activity present in the axes. The highest levels of specific activity were found in developing fruits, from which the enzyme was purified and characterised. This is the first ureidoglycolate-degrading activity that has been purified to homogeneity from a ureide legume. The enzyme was purified 280 fold, and the specific activity for the pure enzyme was 4.4 units mg−1, which corresponds to a turnover number of 1,055 min−1. The native enzyme has a molecular mass of 240 kDa and consists of six identical or similar-sized subunits each of 38 kDa. The activity of the purified enzyme was completely dependent on manganese and asparagine. The enzyme exhibited hyperbolic, Michaelian kinetics for ureidoglycolate with a K m value of 3.9 mM. This enzyme has been characterised as a ureidoglycolate urea-lyase (EC 4.3.2.3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DAI:

Days after imbibition

DAG:

Days after germination

Tea:

Triethanolamine

Tes:

N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid

References

  • Atkins CA (1991) Ammonia assimilation and export of nitrogen from the legume nodule. In: Dilworth M, Glenn A (eds) Biology and biochemistry of nitrogen fixation. Elsevier, Amsterdam, pp 293–319

    Google Scholar 

  • Bacanamwo M, Harper JE (1997) The feedback mechanism of nitrate inhibition of nitrogenase activity in soybean may involve asparagine and/or products of its metabolism. Physiol Plant 100:371–377

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid a sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carvajal N, Olave N, Salas M, Uribe E, Enríquez S (1996) Properties of an arginase from the cotyledons of Phaseolus vulgaris. Phytochemistry 41:373–376

    Article  CAS  Google Scholar 

  • Carvajal N, López V, Salas M, Uribe E, Herrera P, Cerpa J (1999) Manganese is essential for catalytic activity of Escherichia coli agmatinase. Biochem Biophys Res Comm 258:808–811

    Article  PubMed  CAS  Google Scholar 

  • Christianson DW, Cox JD (1999) Catalysis by metal-activated hydroxide in zinc and manganese metalloenzymes. Annu Rev Biochem 68:33–57

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara S, Noguchi T (1995) Degradation of purines: ureidoglycollate lyase out of four allantoin-degrading enzymes is present in mammals. Biochem J 312:315–318

    PubMed  CAS  Google Scholar 

  • Heukeshoven J, Dernick R (1985) Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6:103–112

    Article  CAS  Google Scholar 

  • Kanda M, Ohgishi K, Hanawa T, Saito Y (1997) Arginase of Bacillus brevis Nagano: purification, properties, and implication in gramicidin S biosynthesis. Arch Biochem Biophys 344:37–42

    Article  PubMed  CAS  Google Scholar 

  • Khangulov SV, Sossong TM, Ash DE, Dismukes GC (1998) l-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese (II, II) center. Biochemistry 37:8539–8550

    Article  PubMed  CAS  Google Scholar 

  • Kaplan A (1969) The determination of urea, ammonia, and urease. Methods Biochem Anal 17:311–324

    Article  PubMed  CAS  Google Scholar 

  • Leulliot N, Quevillon-Cheruel S, Sorel I, Graille M, Meyer P, Liger D, Blondeau K, Janin J, van Tilbeurgh H (2004) Crystal structure of yeast allantoicase reveals a repeated jelly roll motif. J Biol Chem 279:23447–23452

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewski KM, Blevins DG, Randall DD (1992) Asparagine and boric acid cause allantoate accumulation in soybean leaves by inhibiting manganese-dependent allantoate amidohydrolase. Plant Physiol 99:1670–1676

    PubMed  CAS  Google Scholar 

  • Mulrooney SB, Hausinger RP (2003) Metal ion dependence of recombinant Escherichia coli allantoinase. J Bacteriol 185:126–134

    Article  PubMed  CAS  Google Scholar 

  • Muñoz A, Piedras P, Aguilar M, Pineda M (2001) Urea is a product of ureidoglycolate degradation in chickpea. Purification and characterization of the ureidoglycolate urea-lyase. Plant Physiol 125:828–834

    Article  PubMed  Google Scholar 

  • Muñoz A (2003) Metabolismo de los ureidos en leguminosas: Caracterización de la actividad ureidoglicolasa de garbanzo y judía. Doctoral thesis, University of Córdoba

  • Piedras P, Pineda M (2003) Manganese is essential for activity of allantoate amidinohydrolase from Chlamydomonas reinhardtii. Plant Sci 165:423–428

    Article  CAS  Google Scholar 

  • Piedras P, Muñoz A, Aguilar M, Pineda M (2000) Allantoate amidinohydrolase (allantoicase) from Chlamydomonas reinhardtii: its purification and catalytic and molecular characterization. Arch Biochem Biophys 378:340–348

    Article  PubMed  CAS  Google Scholar 

  • Pineda M, Piedras P, Cárdenas J (1994) A continuous spectrophotometric assay for ureidoglycolase activity with lactate dehydrogenase or glyoxylate reductase as coupling enzyme. Anal Biochem 222:450–455

    Article  PubMed  CAS  Google Scholar 

  • Rigaud J, Puppo A (1975) Indol-3-acetic acid catabolism by soybean bacteroids. J Gen Microbiol 53:223–228

    Google Scholar 

  • Schubert KR (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Annu Rev Plant Physiol 37:539–574

    Article  CAS  Google Scholar 

  • Schubert KR, Boland MJ (1990) The ureides. In: Miflin BJ, Lea PJ (eds) Biochemistry of plants, vol 16. Academic, San Diego, pp 197–283

  • Serraj R, Vadez V, Denison RF, Sinclair TR (1999) Involvement of ureides in nitrogen fixation inhibition in soybean. Plant Physiol 119:289–296

    Article  PubMed  CAS  Google Scholar 

  • Sinclair TR, Vadez V, Chenu K (2003) Ureide accumulation in response to Mn nutrition by eight soybean genotypes with N2 fixation tolerance to soil drying. Crop Sci 43:592–597

    CAS  Google Scholar 

  • Solorzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol Oceanogr 14:799–801

    CAS  Google Scholar 

  • Stebbins NE, Polacco JC (1995) Urease is not essential for the ureide degradation in soybean. Plant Physiol 234:90–97

    Google Scholar 

  • Takada Y, Noguchi T (1986) Ureidoglycolate lyase, a new metalloenzyme of peroxisomal urate degradation in marine fish liver. Biochem J 235:391–397

    PubMed  CAS  Google Scholar 

  • Takada Y, Tsukiji N (1987) Peroxisomal location and activation by bivalent metal ions of ureidoglycolate lyase, the enzyme involved in urate degradation in Candida tropicalis. J Bacteriol 169:2284–2286

    PubMed  CAS  Google Scholar 

  • Todd CD, Polacco JC (2004) Soybean cultivar “Williams 82” and “Maple Arrow” produce both urea and ammonia during ureide degradation. J Exp Bot 55:867–877

    Article  PubMed  CAS  Google Scholar 

  • Trijbels F, Vogels GD (1967) Allantoate and ureidoglycolate degradation by Pseudomonas aeruginosa. Biochim Biophys Acta 132:115–126

    PubMed  CAS  Google Scholar 

  • Vadez V, Sinclair TR, Serraj J, Purcell LC (2000) Manganese application alleviates the water deficit-induced decline of N2 fixation. Plant Cell Environ 23:497–505

    Article  CAS  Google Scholar 

  • Vogels GD, van der Drift C (1970) Differential analysis of glyoxylate derivatives. Anal Biochem 33:143–157

    Article  PubMed  CAS  Google Scholar 

  • Wells XE, Lees EM (1991) Ureidoglycolate amidohydrolase from developing French bean fruits (Phaseolus vulgaris L.). Arch Biochem Biophys 287:151–159

    Article  PubMed  CAS  Google Scholar 

  • Winkler RD, Blevins DG, Polacco JC, Randall DD (1987) Ureide catabolism in soybeans. II. Pathway of catabolism in intact leaf tissue. Plant Physiol 83:585–591

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministerio de Ciencia y Tecnología (BOS2003-01595) and Plan Andaluz de Investigación (CVI-115). We thank the Ministerio de Educación, Cultura y Deporte for the award of predoctoral fellowships to A. Muñoz and M.J. Raso and the Ministerio de Ciencia y Tecnología for the award of a “Ramón y Cajal” contract to P. Piedras. We thank Anne Edwards the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Piedras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, A., Raso, M.J., Pineda, M. et al. Degradation of ureidoglycolate in French bean (Phaseolus vulgaris) is catalysed by a ubiquitous ureidoglycolate urea-lyase. Planta 224, 175–184 (2006). https://doi.org/10.1007/s00425-005-0186-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0186-8

Keywords

Navigation