Skip to main content
Log in

UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The UNUSUAL FLORAL ORGANS (UFO) gene of Arabidopsis encodes an F-box protein required for the determination of floral-organ and floral-meristem identity. Mutation of UFO leads to dramatic changes in floral-organ type which are well-characterized whereas inflorescence defects are more subtle and less understood. These defects include an increase in the number of secondary inflorescences, nodes that alternate between forming flowers and secondary inflorescences, and nodes in which a single flower is subtended by a bract. Here, we show how inflorescence defects correlate with the abnormal development of floral primordia and establish a temporal requirement for UFO in this process. At the inflorescence apex of ufo mutants, newly formed primordia are initially bract-like. Expression of the floral-meristem identity genes LFY and AP1 are confined to a relatively small adaxial region of these primordia with expression of the bract-identity marker FIL observed in cells that comprise the balance of the primordia. Proliferation of cells in the adaxial region of these early primordia is delayed by several nodes such that primordia appear “chimeric” at several nodes, having visible floral and bract components. However, by late stage 2 of floral development, growth of the bract generally ceases and is overtaken by development of the floral primordium. This abnormal pattern of floral meristem development is not rescued by expression of UFO from the AP1 promoter, indicating that UFO is required prior to AP1 activation for normal development of floral primordia. We propose that UFO and LFY are jointly required in the inflorescence meristem to both promote floral meristem development and inhibit, in a non-cell autonomous manner, growth of the bract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Col:

Columbia

IM:

Inflorescence meristem

Ler :

Landsberg erecta

SCF:

Skp1-Cullin-F-box

SEM:

Scanning electron microscopy

SAM:

Shoot apical meristem

References

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci 316:1194–1199

    CAS  Google Scholar 

  • Blázquez MA, Soowal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835–3844

    PubMed  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz E M, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119:721–743

    CAS  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    PubMed  CAS  Google Scholar 

  • Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285:585–587

    Article  PubMed  CAS  Google Scholar 

  • Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971

    Article  PubMed  CAS  Google Scholar 

  • Callis J, Vierstra RD (2000) Protein degradation in signaling. Curr Opin Plant Biol 3:381–386

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Dinneny JR, Yadegari R, Fisher RL, Yanofsky MF, Weigel D (2004) The role of JAGGED in shaping lateral organs. Development 131:1101–1110

    Article  PubMed  CAS  Google Scholar 

  • Durfee T, Roe JL, Sessions RA, Inouye C, Serikawa K, Feldmann KA, Weigel D, Zambryski PC (2003) The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis. Proc Nat Acad Sci USA 100:8571–8576

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560

    Article  PubMed  CAS  Google Scholar 

  • Haughn GW, Somerville CR (1988) Genetic control of morphogenesis in Arabidopsis. Dev Genet 9:73–89

    Article  Google Scholar 

  • Hempel FD, Feldman LJ (1995) Specification of chimeric flowering shoots in wild-type Arabidopsis. Plant J 8:725–731

    Article  PubMed  CAS  Google Scholar 

  • Hempel FD, Weigel D, Mandel MA, Ditta G, Zambryski PC, Feldman LJ, Yanofsky MF (1997) Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124:3845–3853

    PubMed  CAS  Google Scholar 

  • Hempel FD, Zambryski PC, Feldman LJ (1998) Photoinduction of flower identity in vegetatively biased primordia. Plant Cell 10:1663–1675

    Article  PubMed  CAS  Google Scholar 

  • Hill JP, Lord EM (1989) Floral development in Arabidopsis thaliana: a comparison of the wild-type and the homeotic pistillata mutant. Can J Bot 67:2922–2936

    Article  Google Scholar 

  • Honma T, Goto K (2000) The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development 127:2021–2030

    PubMed  CAS  Google Scholar 

  • Hooker TS, Millar AA, Kunst J (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568–1580

    Article  PubMed  CAS  Google Scholar 

  • Huala E, Sussex IM (1992) LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell 4:901–913

    Article  PubMed  Google Scholar 

  • Ingram GC, Goodrich J, Wilkinson MD, Simon R, Haughn GW, Coen ES (1995) Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell 7:1501–1510

    Article  PubMed  CAS  Google Scholar 

  • Irish VF, Sussex IM (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2:741–753

    Article  PubMed  CAS  Google Scholar 

  • Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–697

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of the TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Krizek BA, Meyerowitz EM (1996) The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122:11–22

    PubMed  CAS  Google Scholar 

  • Lamb RS, Hill TA, Tan QK-G, Irish VF (2002) Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129:2079–2086

    PubMed  CAS  Google Scholar 

  • Laufs P, Coen E, Kronenberger J, Traas J, Doonan J (2003) Separable roles of UFO during floral development revealed by conditional restoration of gene function. Development 130:785–796

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Wolfe DS, Nilsson O, Weigel D (1997) A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr Biol 7:95–104

    Article  PubMed  Google Scholar 

  • Levin JZ, Meyerowitz EM (1995) UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7:529–548

    Article  PubMed  CAS  Google Scholar 

  • Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11:1007–1018

    Article  PubMed  CAS  Google Scholar 

  • Lohmann JU, Weigel D (2002) Building beauty: the genetic control of floral patterning. Dev Cell 2:135–142

    Article  PubMed  CAS  Google Scholar 

  • Long J, Barton MK (2000) Initiation of axillary and floral meristems in Arabidopsis. Dev Biol 218:341–353

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377:522–524

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  PubMed  CAS  Google Scholar 

  • McBride KE, Summerfelt KR (1990) Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol 14:269–276

    Article  PubMed  CAS  Google Scholar 

  • Modrusan Z, Reiser L, Feldmann KA, Fischer RL, Haughn GW (1994) Homeotic transformation of ovules into carpel-like structures in Arabidopsis. Plant Cell 6:333–349

    Article  PubMed  CAS  Google Scholar 

  • Ni W, Xie D, Hobbie L, Feng B, Zhao D, Akkara J, Ma H (2004) Regulation of flower development in Arabidopsis by SCF complexes. Plant Physiol 134:1574–1585

    Article  PubMed  CAS  Google Scholar 

  • Nilsson O, Wu E, Wolfe DS, Weigel D (1998) Genetic ablation of flowers in transgenic Arabidopsis. Plant J 15:799–804

    Article  PubMed  CAS  Google Scholar 

  • Parcy F, Nilsson O, Busch MA, Lee I, Weigel D (1998) A genetic framework for floral patterning. Nature 395:561–566

    Article  PubMed  CAS  Google Scholar 

  • Patton EE, Willems AR, Tyers M (1998) Combinatorial control in ubiquitin-dependent proteolysis: don’t Skp the F-box hypothesis. Trends Genet 14:236–243

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Klenz JE, Kohalmi SE, Risseeuw E, Haughn GW, Crosby WL (1999) The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J 20:433–445

    Article  PubMed  CAS  Google Scholar 

  • Sawa S, Ito T, Shimura Y, Okada K (1999a) FILAMENTOUS FLOWER controls the formation and development of Arabidopsis inflorescences and floral meristems. Plant Cell 11:69–86

    Article  PubMed  CAS  Google Scholar 

  • Sawa S, Watanabe K, Goto K, Kanaya E, Morita EH, Okada K (1999b) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev 13:1079–1088

    Article  PubMed  CAS  Google Scholar 

  • Shannon S, Meeks-Wagner DR (1993) Genetic interactions that regulate inflorescence development in Arabidopsis. Plant Cell 5:639–655

    Article  PubMed  Google Scholar 

  • Schultz EA, Haughn GW (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3:771–781

    Article  PubMed  Google Scholar 

  • Schultz EA, Haughn GW (1993) Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development 119:745–765

    CAS  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  PubMed  CAS  Google Scholar 

  • Wagner D, Sablowski RWM, Meyerowitz EM (1999) Transcriptional activation of APETALA1 by LEAFY. Science 285:582–584

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Feng S, Nakayama N, Crosby WL, Irish V, Deng XW, Wei N (2003) The COP9 signalosome interacts with SCFUFO and participates in Arabidopsis flower development. Plant Cell 15:1071–1082

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MD, Haughn GW (1995) UNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate in Arabidopsis. Plant Cell 7:1485–1499

    Article  PubMed  CAS  Google Scholar 

  • Zhao D, Yang M, Solava J, Ma H (1999) The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis. Dev Genet 25:209–223

    Article  PubMed  CAS  Google Scholar 

  • Zhao D, Yu Q, Chen M, Ma H (2001) The ASK1 gene regulates B function gene expression in cooperation with UFO and LFY in Arabidopsis. Development 128:2735–2746

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Ilha Lee, Takuji Wade, and Detlef Weigel for their gift of AP1::UFO, and AP1::UFO ufo-2 transgenic plants. We also thank Detlef Weigel for providing 35S::UFO transgenic plants and thank Kiyotaka Okada for providing the fil-1 mutant. We thank members of the laboratory for helpful discussions during the course of this work. George Haughn was supported by both Strategic and Discovery grants from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George W. Haughn.

Additional information

Shelley R. Hepworth and Jennifer E. Klenz contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hepworth, S.R., Klenz, J.E. & Haughn, G.W. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta 223, 769–778 (2006). https://doi.org/10.1007/s00425-005-0138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0138-3

Keywords

Navigation