Skip to main content
Log in

Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The transition from a green, hard, and acidic pericarp to a sweet, soft, coloured, and sugar-rich ripe fruit occurs in many unrelated fruit species. High throughput identification of differentially expressed genes in grape berry has been achieved by the use of 50-mers oligoarrays bearing a set of 3,200 Unigenes from Vitis vinifera to compare berry transcriptome at nine developmental stages. Analysis of transcript profiles revealed that most activations were triggered simultaneously with softening, occurring within only 24 h for an individual berry, just before any change in colouration or water, sugar, and acid content can be detected. Although most dramatically induced genes belong to unknown functional categories, numerous changes occur in the expression of isogenes involved in primary and secondary metabolism during ripening. Focusing on isogenes potentially significant in development regulation (hormonal control of transcription factor) revealed a possible role for several hormones (cytokinin, gibberellin, or jasmonic acid). Transcription factor analysis revealed the induction of RAP2 and WRKY genes at véraison, suggesting increasing biotic and abiotic stress conditions during ripening. This observation was strengthened by an increased expression of multiple transcripts involved in sugar metabolism and also described as induced in other plant organs during stress conditions. This approach permitted the identification of new isogenes as possible control points: a glutathione S-transferase exhibits the same expression profile as anthocyanin accumulation and a new putative sugar transporter is induced in parallel with sugar import.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

GRIP:

Grape ripening induced protein

UGFT:

UDP glucose-flavonoid 3-O-glucosyl transferase

References

  • Ageorges A, Issaly N, Picaud S, Delrot S, Romieu C (2000) Identification and functional expression in yeast of a grape berry sucrose carrier. Plant Physiol Biochem 38:1–9

    Article  Google Scholar 

  • Aharoni A, Keizer LC, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Verhoeven, HA, Blaas J, Van Houwelingen AM, De Vos RC, Van Der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, Van Tunen AJ, O’Connell AP (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12:647–662

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Keizer LC, Van Den Broeck HC, Blanco-Portales R, Munoz-Blanco J, Bois G, Smit P, De Vos RC, O’Connell AP (2002) Novel insight into vascular, stress, and auxin-dependent and -independent gene expression programs in strawberry, a non-climacteric fruit. Plant Physiol 129:1019–1031

    Article  PubMed  CAS  Google Scholar 

  • Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10:1135–1149

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC and Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analyse of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 403:503–511

    Article  CAS  Google Scholar 

  • Baiges I, Schaffner AR, Affenzeller MJ, Mas A (2002) Plant aquaporins. Physiol Plant 115:175–182

    Article  PubMed  CAS  Google Scholar 

  • Barnavon L, Doco T, Terrier N, Ageorges A, Romieu C, Pellerin P (2000) Analysis of cell wall neutral sugar composition, β-galactosidase activity and a related cDNA clone throughout the development of Vitis vinifera grape berries. Plant Physiol Biochem 38:289–300

    Article  CAS  Google Scholar 

  • Baugh LR, Hill AA, Brown EL, Hunter CP (2001) Quantitative analysis of mRNA amplification by in vitro transcription. Nucl Acids Res 29:e29

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Davies C, Robinson SP (1996a) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111:1059–1066

    CAS  Google Scholar 

  • Boss PK, Davies C, Robinson SP (1996b) Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol Biol 32:565–569

    Article  CAS  Google Scholar 

  • Carystinos GD, MacDonald HR, Monroy AF, Dhindsa RS, Poole RJ (1995) Vacuolar H(+)-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol 108:641–649

    Article  PubMed  CAS  Google Scholar 

  • Coombe BG (1973) Regulation of set and development of the grape berry. Acta Hortic 34:261–269

    Google Scholar 

  • Dali N, Michaud D, Yelle S (1992) Evidence for xylem discontinuity in Pinot noir and Merlot grapes: dye uptake and mineral composition during berry maturation. Am J EnolVitic 44:187–192

    Google Scholar 

  • Darley CP, Davies JM, Sanders D (1995) Chill induced changes in the activity and abundance of the vacuolar proton-pumping pyrophosphatase from mung bean hypocotyls. Plant Physiol 109:659–665

    PubMed  CAS  Google Scholar 

  • Davies C, Robinson SP (1996) Sugar accumulation in grape berries. Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiol 111:275–283

    Article  PubMed  CAS  Google Scholar 

  • Davies C, Robinson SP (2000) Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterization of cDNAs encoding putative cell wall and stress response proteins. Plant Physiol 122:803–812

    Article  PubMed  CAS  Google Scholar 

  • Davies C, Wolf T, Robinson SP (1999) Three putative sucrose transporters are differentially expressed in grapevine tissues. Plant Science 147:93–100

    Article  CAS  Google Scholar 

  • Didier G, Brézellec P, Remy E and Hénault A (2002) GeneANOVA-gene expression analysis of variance. Bioinformatics 18:490–491

    Article  PubMed  CAS  Google Scholar 

  • Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50:237–248

    Article  PubMed  CAS  Google Scholar 

  • Eberwise J, Yeh H, Miyashirao K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci USA 89:3010–3014

    Article  PubMed  Google Scholar 

  • Ehness R, Roitsch T (1997) Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins. Plant J 11:539–548

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Fillion L, Ageorges A, Picaud S, Coutos-Thévenot P, Lemoine R, Romieu C, Delrot S (1999) Cloning and expression of hexose transporter gene expressed during the ripening of grape berry. Plant Physiol 120:1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein D, Ewing R, Gollub J, Sterky F, Cherry JM, Somerville S (2002) Microarray data quality analysis: lessons from the AFGC project. Arabidopsis Functional Genomics Consortium. Plant Mol Biol 48:119–131

    Article  PubMed  CAS  Google Scholar 

  • Forsthoefel NR, Vernon DM, Cushman JC (1995a) A salinity-induced gene from the halophyte M. crystallinum encodes a glycolytic enzyme, cofactor-independent phosphoglyceromutase. Plant Mol Biol 29:213–226

    Article  CAS  Google Scholar 

  • Forsthoefel NR, Cushman MA, Cushman JC (1995b) Posttranscriptional and posttranslational control of enolase expression in the facultative Crassulacean acid metabolism plant Mesembryanthemum crystallinum L. Plant Physiol 108:1185–1195

    Article  CAS  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    Article  PubMed  CAS  Google Scholar 

  • Girke T, Todd J, White J, Benning C, Ohlrogge J (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124:1570–1581

    Article  PubMed  CAS  Google Scholar 

  • Hanson J, Johannesson H, Engtröm P (2001) Sugar-dependent alterations in cotyledon and leaf development in transgenic plants expressing the HDZhdip gene ATHB13. Plant Mol Biol 45:247–262

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yagi M, Koizumi N, Kusano T, Sano H (2000) Screening of wound-responsive genes identifies an immediate-early expressed gene encoding a highly charged protein in mechanically wounded tobacco plants. Plant Cell Physiol 41:684–691

    Article  PubMed  CAS  Google Scholar 

  • Hawker JS (1969) Changes in the activities of enzymes concerned with sugar metabolism during the development of grape berries. Phytochemistry 8:9–17

    Article  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru M, Kobayashhi S (2002) Expression of a xyloglucan endo-transglycosylase gene is closely related to grape berry softening. Plant Science 162:621–628

    Article  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 123:403–405

    Article  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Science 167:247–252

    Article  CAS  Google Scholar 

  • Jimenez A, Creissen G, Kular B, Firmin J, Robinson S, Verhoeyen M, Mullineaux P (2002) Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta 214:751–758

    Article  PubMed  CAS  Google Scholar 

  • Kane MD, Jatkoe TA, Stumpf CR, Lu J, Thomas JD, Madore SJ (2000) Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res 28:4552–4557

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kennedy JA, Hayasaka Y, Vidal S, Waters EJ, Jones GP (2001) Composition of grape skin proanthocyanidins at different stages of berry development. J Agric Food Chem 49:5348–5355

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Lal SK, Lee C, Sachs MM (1998) Differential regulation of enolase during anaerobiosis in maize. Plant Physiol 118:1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu J (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21:2692–2702

    Article  PubMed  CAS  Google Scholar 

  • Lers A, Burd S, Lomaniec E, Droby S, Chalutz E (1998) The expression of a grapefruit gene encoding an isoflavone reductase-like protein is induced in response to UV. Plant Mol Biol 36:847–856

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E (1991) Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J 1:37–49

    Article  PubMed  CAS  Google Scholar 

  • Mellema S, Eichenberger W, Rawyler A, Suter M, Tadege M, Kuhlemeier C (2002) The ethanolic fermentation pathway supports respiration and lipid biosynthesis in tobacco pollen. Plant J 30:329–336

    Article  PubMed  CAS  Google Scholar 

  • Nguyen-Quoc B, Foyer CH (2001) A role for ’futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J Exp Bot 52:881–889

    Article  PubMed  CAS  Google Scholar 

  • Nunan KJ, Davies C, Robinson SP, Fincher GB (2001) Expression patterns of cell wall-modifying enzymes during grape berry development. Planta 214:257–264

    Article  PubMed  CAS  Google Scholar 

  • Ojeda H, Deloire A, Carbonneau A, Ageorges A, Romieu C (1999) Berry development of grapevines: Relation between the growth of berries and their DNA indicate cell multiplication and enlargement. Vitis 38:145–150

    Google Scholar 

  • Or E, Baybik J, Sadka A, Saks Y (2000) Isolation of mitochondrial malate dehydrogenase and phosphoenolpyruvate carboxylase cDNA clones from grape berries and analysis of their expression pattern throughout berry development. J Plant Physiol 157:527–534

    CAS  Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Picaud S, Becq F, Dédaldéchamp F, Ageorges A, Delrot S (2003) Cloning and expression ot two plasma membrane aquaporins expressed during the ripening of grape berry. Funct Plant Biol 30:621–630

    Article  CAS  Google Scholar 

  • Rajeevan MS, Ranamukhaarachchi DG, Vernon SD and Unger ER (2001) Use of real-Time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods 25:443–451

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Richmond T, Somerville S (2000) Chasing the dream: plant EST microarray. Curr Opin Plant Biol 3:108–116

    Article  PubMed  CAS  Google Scholar 

  • Robinson SP, Jacobs AK, Dry IB (1997). A Class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol 114:771–778

    Article  PubMed  CAS  Google Scholar 

  • Salzman RA, Tikhonova I, Bordelon BP, Hasegawa PM, Bressan RA (1998) Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defence response during fruit ripening in grape. Plant Physiol 117:465–72

    Article  PubMed  CAS  Google Scholar 

  • Sarni-Manchado P, Verries C, Tesnière C. (1997) Molecular characterization and structural analysis of one alcohol dehydrogenase gene (GV–Adh1) expressed during ripening of grapevine (Vitis vinifera L.) berry. Plant Sci 125:177–187

    Article  CAS  Google Scholar 

  • Sarry JE, Sommerer N, Sauvage FX, Bergoin A, Rossignol M, Albagnac G, Romieu C (2004) Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Proteomics 4:201–215

    Article  PubMed  CAS  Google Scholar 

  • Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonellin C (1994) Cloning and molecular analysis of structural genes involved in flavonoid biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755

    Article  PubMed  CAS  Google Scholar 

  • Tattersall DB, van Heeswijck R, Høj PB (1997) Identification and characterization of a fruit-specific, thaumatin-like protein that accumulates at very high level in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Physiol 114:759–769

    Article  PubMed  CAS  Google Scholar 

  • Terrier N, Romieu C (2001) Grape berry acidity. In: K Roubelakis-Angelakis KA (ed) Molecular biology and biotechnology of the grapevine. Kluwer, Dordrecht, pp 35–57

    Google Scholar 

  • Terrier N, Sauvage FX, Ageorges A, Romieu C (2001a) Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta 213:20–28

    Article  CAS  Google Scholar 

  • Terrier N, Ageorges A, Abbal P, Romieu C (2001b) Generation of ESTs from grape berry at various developmental stages. J Plant Physiol 158:1575–1583

    Article  CAS  Google Scholar 

  • Tesnière C, Verries C (2000) Molecular cloning and expression of cDNAs encoding alcohol dehydrogenases from Vitis vinifera L. during berry development. Plant Sci 157:77–88

    Article  PubMed  Google Scholar 

  • Tesnière C, Romieu C, Dugelay I, Nicol MZ, Flanzy C, Robin JP (1994) Partial recovery of grape energy metabolism upon aeration following anaerobic stress. J Exp Bot 45:145–151

    Article  Google Scholar 

  • Umeda M, Uchimiya H (1994) Differential transcript levels of genes associated with glycolysis and alcohol fermentation in rice plants (Oryza sativa L.) under submergence stress. Plant Physiol 106:1015–1022

    PubMed  CAS  Google Scholar 

  • Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MA, de Vries SC (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15:1563–1577

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1000 rapidly responding genes and linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–557

    Article  PubMed  CAS  Google Scholar 

  • Weschke W, Panitz R, Gubatz S, Wang Q, Radchuk R, Weber H, Wobus U (2003) The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. Plant J 33:395–411

    Article  PubMed  CAS  Google Scholar 

  • White PJ (2002) Recent advances in fruit development and ripening: an overview. J Exp Bot 53:1995–2000

    Article  PubMed  CAS  Google Scholar 

  • Yang YH, Speed T (2002) Design issues for cDNA microarray experiments. Nature Rev Gen 3:579–588

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Genoplant grant n° CI 2001003 entitled “Grapevine genomics: Grape berry development and ripening, transcriptomic analysis and identification of interest genes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Romieu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terrier, N., Glissant, D., Grimplet, J. et al. Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 222, 832–847 (2005). https://doi.org/10.1007/s00425-005-0017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0017-y

Keywords

Navigation