Skip to main content
Log in

Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for l-galactono-1,4-lactone dehydrogenase

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript


l-Galactono-1,4-lactone dehydrogenase (GalLDH; EC is the last enzyme in the putative l-ascorbic acid (AsA) biosynthetic pathway of plants. Here, we show for the first time that the overexpression of GalLDH can increase AsA content in tobacco (Nicotiana tabacum L.) BY-2 cells. To see the effect, we analyzed the properties of these AsA-overproducing transgenic cell lines, especially in relation to AsA content of cells, cell division, senescence and resistance to oxidative stress. The mitotic index in AsA-overproducing cells was higher than in wild-type cells. Moreover, the browning of these cells was markedly restrained, and the proportion of dead cells was reduced, especially in the later period of culture. These AsA-overproducing cells also acquired resistance to paraquat (methyl viologen), which produces active oxygen species. These results contribute to the previous insights about AsA and raise the possibility of the generation of plants that have resistance to environmental stresses by increasing their AsA content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3
Fig. 4a–c
Fig. 5a,b
Fig. 6a,b
Fig. 7a,b

Similar content being viewed by others



Ascorbate oxidase


Ascorbate peroxidase

AsA :

l-Ascorbic acid

BY-2 :

Bright Yellow 2

cAPX :

Cytosolic ascorbate peroxidase


Dehydroascorbate reductase




Fluorescein diacetate

GalL :


GalLDH :

l-Galactono-1,4-lactone dehydrogenase

GMEase :


GMPase :

GDP-d-Mannose pyrophosphorylase

GR :

Glutathione reductase

sAPX :

Stromal ascorbate peroxidase


  • Arrigoni O, Arrigoni-Liso R, Calabrese G (1975) Lycorine as an inhibitor of ascorbic acid biosynthesis. Nature 256:513–514

    CAS  Google Scholar 

  • Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–343

    Article  CAS  PubMed  Google Scholar 

  • Citterio S, Sgorbati S, Scippa S, Sparvoli E (1994) Ascorbic acid effect on the onset of cell proliferation in pea root. Physiol Plant 92:601–607

    Article  CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, Pallanca JE, Last RL, Smirnoff N (1997) l-Ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtc1. Plant Physiol 115:1277–1285

    Article  CAS  PubMed  Google Scholar 

  • De Leo P, Dalessandro G, Tommasi F, Liso R, Arrigoni O (1973) Inhibitory effect of lycorine on cell division and cell elongation. Plant Cell Physiol 14:481–486

    Google Scholar 

  • De Pinto MC, Francis D, De Gara L (1999) The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma 209:90–97

    Google Scholar 

  • Garg OP, Kapoor V (1972) Retardation of leaf senescence by ascorbic acid. J Exp Bot 76:699–703

    Google Scholar 

  • Gutierrez C (1998) The retinoblastoma pathway in plant cell cycle and development. Curr Opin Plant Biol 1:492–497

    Article  CAS  PubMed  Google Scholar 

  • Imai T, Karita S, Shiratori G-I, Hattori M, Nunome T, Oba K, Hirai M (1998) l-Galactono-γ-lactone dehydrogenase from sweet potato: purification and cDNA sequence analysis. Plant Cell Physiol 39:1350–1358

    CAS  PubMed  Google Scholar 

  • Innocenti AM, Bitonti MB, Arrigoni O, Liso R (1990) The size of the quiescent centre in roots of Allium cepa L. grown with ascorbic acid. New Phytol 114:507–509

    Google Scholar 

  • Isherwood FA, Mapson LW (1962) Ascorbic acid metabolism in plants: part II. Biosynthesis. Annu Rev Plant Physiol 13:329–350

    Article  CAS  Google Scholar 

  • Kato N, Esaka M (1996) cDNA cloning and gene expression of ascorbate oxidase in tobacco. Plant Mol Biol 30:833–837

    Article  CAS  PubMed  Google Scholar 

  • Kato N, Esaka M (1999) Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells. Physiol Plant 105:321–329

    Article  CAS  Google Scholar 

  • Kato N, Esaka M (2000) Expression of transgenic tobacco protoplasts expressing pumpkin ascorbate oxidase is more rapid than that of wild-type protoplasts. Planta 210:1018–1022

    Article  CAS  PubMed  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978

    Article  CAS  Google Scholar 

  • Liso R, Calabrese G, Bitonti MB, Arrigoni O (1984) Relationships between ascorbic acid and cell division. Exp Cell Res 150:314–320

    CAS  PubMed  Google Scholar 

  • Liso R, Innocenti AM, Bitoni MB, Arrigoni O (1988) Ascorbic acid-induced progression of quiescent centre cells from G1 to S phase. New Phytol 110:469–471

    CAS  Google Scholar 

  • Loewus FA (1963) Tracer studies on ascorbic acid formation in plants. Phytochemistry 2:109–128

    Article  CAS  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler CL (2004) myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka K, Nakamura K (1991) Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci USA 88:834–838

    CAS  PubMed  Google Scholar 

  • Millar AH, Mittova V, Kiddle G, Heazlewood JL, Bartoli CG, Theodoulou FL, Foyer CH (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133:443–447

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    CAS  Google Scholar 

  • Navas P, Gomez-Diaz C (1995) Ascorbate free radical and its role in growth control. Protoplasma 184:8–13

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Oba K, Ishikawa S, Nishikawa M, Mizuno H, Yamamoto T (1995) Purification and properties of l-galactono-γ-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J Biochem 117:120–124

    CAS  PubMed  Google Scholar 

  • Østergaard J, Persiau G, Davey M, Bauw G, Van Montagu M (1997) Isolation of a cDNA coding for l-galactono-γ-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants: purification, characterization, cDNA cloning, and expression in yeast. J Biol Chem 272:30009–30016

    Google Scholar 

  • Pallanca JE, Smirnoff N (2000) The control of ascorbic acid synthesis and turnover in pea seedlings. J Exp Bot 51:669–674

    Article  CAS  PubMed  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951

    Article  CAS  PubMed  Google Scholar 

  • Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Curr Opin Plant Biol 6:379–389

    Article  CAS  PubMed  Google Scholar 

  • Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641

    Article  CAS  PubMed  Google Scholar 

  • Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52:2207–2211

    CAS  PubMed  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    Article  CAS  PubMed  Google Scholar 

  • Tabata K, Oba K, Suzuki K, Esaka M (2001) Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for l-galactono-1,4-lactone dehydrogenase. Plant J 27:139–148

    Article  CAS  PubMed  Google Scholar 

  • Verjovic-Jovanovic SD, Pignocchi C, Noctor G, Foyer CH (2001) Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of antioxidant system. Plant Physiol 127:426–435

    Article  PubMed  Google Scholar 

  • Verwoerd TC, Dekker BM, Hoekema A (1989) A small scale procedure for rapid isolation of plant RNAs. Nucleic Acids Res 17:2362

    CAS  PubMed  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  CAS  PubMed  Google Scholar 

  • Widholm JM (1972) The use of fluorescein diacetate and phenosafranin for determining viability of cultured plant cells. Stain Technol 47:189–194

    CAS  PubMed  Google Scholar 

  • Wolucka BA, Montagu MV (2003) GDP-mannose 3′,5′-epimerase forms GDP-l-glucose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490

    Article  CAS  PubMed  Google Scholar 

  • Yabuta Y, Yoshimura K, Takeda T, Shigeoka S (2000) Molecular characterization of tobacco mitochondrial l-galactono-γ-lactone dehydrogenase and its expression in Escherichia coli. Plant Cell Physiol 41:666–675

    CAS  PubMed  Google Scholar 

Download references


We thank Prof. K. Nakamura (Nagoya University, Japan) and Dr. K. Matsuoka (Plant Science Center, RIKEN, Japan) for the generous gift of pMAT037. We are also thankful to Prof. Oba (Nagoya Women’s University, Japan) for the generous gift of GalLDH-specific antibody. Mr. A.A. Badejo (Hiroshima University, Japan) is thanked for critically reading and correcting this paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Muneharu Esaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokunaga, T., Miyahara, K., Tabata, K. et al. Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for l-galactono-1,4-lactone dehydrogenase. Planta 220, 854–863 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: