Skip to main content
Log in

(Z)-3-Hexenol induces defense genes and downstream metabolites in maize

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript


In response to insect feeding, corn plants (Zea mays cv. Delprim) release elevated levels of volatile organic compounds (VOCs), including the C6-volatile (Z)-3-hexenol. The level of mRNA accumulation for a series of defense genes was monitored in response to application of (Z)-3-hexenol (50 nmol) to undamaged plants. The induction of transcripts for hpl (hydroperoxide lyase), fps (farnesyl pyrophosphate synthase), pal (phenylalanine ammonia-lyase), lox (lipoxygenase), igl (indole-3-glycerol phosphate lyase) and mpi (maize proteinase inhibitor) were compared with metabolites generated from the respective pathways. While headspace VOC analysis showed an increase in (Z)-3-hexenyl acetate and methyl salicylate with lox and pal induction, respectively, MPI accumulation was not observed with an increase in mpi transcripts. Moreover, (Z)-3-hexenol treatment did not elevate sesquiterpene emissions or activate fps transcription. Chemical labeling and bioassay experiments established that exogenous (Z)-3-hexenol can be taken up and converted to a less active acetylated form. These data indicate that (Z)-3-hexenol can serve as a signaling molecule that triggers defense responses in maize and can rapidly be turned over in planta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3a,b
Fig. 4a,b
Fig. 5
Fig. 6
Fig. 7a,b
Fig. 8

Similar content being viewed by others



Beet armyworm


Farnesyl pyrophosphate synthase


Glycerol phosphate dehydrogenase, cytosolic form


Hydroxymethylglutaryl-coenzyme A reductase


Hydroperoxide lyase


Indole-3-glycerol phosphate lyase



MeJA :

Methyl jasmonate

MeSA :

Methyl salicylate


Maize proteinase inhibitor


Phenylalanine ammonia lyase


Volatile organic compound


  • Alborn HT, Turlings TC, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    CAS  Google Scholar 

  • Arimura GI, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory induced volatiles elicit defense genes in lima bean leaves. Nature 406:512–515

    CAS  PubMed  Google Scholar 

  • Arimura GI, Ozawa R, Horiuchi JI, Nishioka T, Takabayashi J (2001) Plant–plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Sys Ecol 29:1049–1061

    CAS  Google Scholar 

  • Bate NJ, Rothstein SJ (1998) C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16:561–569

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–255

    Article  CAS  PubMed  Google Scholar 

  • Buchanan B, Gruissem W, Jones R (2000) Biochemistry and molecular biology of plants. Wiley, Somerset, NJ, USA

  • Codero MJ, Raventos D, SanSegundo B (1994) Expression of a maize proteinase inhibitor gene is induced in response to wounding and fungal infection—systemic wound-response of a monocot gene. Plant J 6:141–150

    PubMed  Google Scholar 

  • Croft K, Juttner F, Slusarenko AJ (1993) Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol 101:13–24

    CAS  PubMed  Google Scholar 

  • Danon A (1997) Translational regulation in the chloroplast. Plant Physiol 115:1293–1298

    CAS  PubMed  Google Scholar 

  • Doares SH, Narvez-Vasquez J, Conconi A, Ryan CA (1995) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108:1741–1746

    CAS  PubMed  Google Scholar 

  • Engelberth J, Koch TGS, Bachmann N, Rechtenbach J, Boland W (2001) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling: cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377

    CAS  PubMed  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    CAS  PubMed  Google Scholar 

  • Farag MA, Paré PW (2002) C6-green volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554

    CAS  PubMed  Google Scholar 

  • Farmer EE (2001) Surface-to-air signals. Nature 411:854–856

    Article  CAS  PubMed  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    CAS  PubMed  Google Scholar 

  • Frey M, Stettner C, Paré PW, Schmelz E, Tumlinson JH, Gierl A (2000) An herbivore elicitor activates the gene for indole emission in maize. Proc Natl Acad Sci USA 97:14801–14806

    CAS  PubMed  Google Scholar 

  • Gardener HW, Dornbos DL, Desjardins A (1990) Hexanal, trans-2-hexenal, and trans-2-nonenal inhibit soybean, Glycine max, seed germination. J Agric Food Chem 38:1316–1320

    Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    CAS  PubMed  Google Scholar 

  • Ha SB, Lee BC, Lee DE, Kuk YI, Lee Ay, Han OE (2002) Molecular characterization of the gene encoding rice allene oxide synthase and its expression. Biosci Biotechnol Biochem 66:2719–2722

    CAS  PubMed  Google Scholar 

  • Halitschke R, Kessler A, Klah J, Lorenz A, Baldwin IT (2000) Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuate. Oecologia 124: 408–417

    Google Scholar 

  • Harms K, Ramirez I, Pena-Cortez H (1998) Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid. Plant Physiol 118:1057–1065

    CAS  PubMed  Google Scholar 

  • Hatanaka A, Kajiwara T, Sekiya J (1987) Biosynthesis pathway for C6-aldehydes formation from linolenic acid in green leaves. Chem Phys Lipids 44:341–361

    CAS  Google Scholar 

  • Hildebrand DF, Hamilton-Kemp TR, Legg CS, Bookjans G (1988) Plant lipoxygenase: occurrence, properties and possible functions. Plant Biochem Physiol 7:201–219

    Google Scholar 

  • Hildebrand DF, Brown GC, Jackson DM, Hamilton TR (1993) Effect of some leaf emitted volatiles compounds on aphid population increase. J Chem Ecol 19:1875–1887

    CAS  Google Scholar 

  • Hoffman T, Schmidt J, Zheng X, Bent A (1999) Isolation of ethylene insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene resistance. Plant Physiol 119:935–949

    CAS  PubMed  Google Scholar 

  • Keinänen M, Oldham NJ, Baldwin IT (2001) Rapid HPLC screening of jasmonate-induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in Nicotiana attenuata. J Agric Food Chem 49:3553–3558

    PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2143

    CAS  PubMed  Google Scholar 

  • Kim ES, Back K, Baik M, Choi E, Han O (2001) Sequence of the wound-responsive lipoxygenase gene from maize plants. J Biochem Mol Biol 34:259–261

    CAS  Google Scholar 

  • Kim ES, Kim EH, Park RD, Lee Y, Han O (2002) Dual positional specificity of wound-responsive lipoxygenase from maize plants. J Plant Physiol 159:1263–1265

    Google Scholar 

  • King EG, Leppla NC (1984) Advances and challenges in insect rearing. US Government Printing Services, Washington, DC

  • Koch T, Bandemer K, Boland W (1997) Biosynthesis of cis-jasmone: a pathway for the inactivation and the disposal of the plant stress hormone jasmonic acid to the gas phase. Helv Chem Acta 80:838–850

    CAS  Google Scholar 

  • Koch T, Krumm T, Jung V, Engelberth J, Boland W (1999) Differential Induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signaling pathway. Plant Physiol 121:153–162

    CAS  PubMed  Google Scholar 

  • Kohlmann M, Bachmann A, Weichert H, Kolbe A, Balkenhohl T, Wasternack C, Feussner I (1999) Formation of lipoxygenase-pathway-derived aldehydes in barley leaves upon methyl jasmonate treatment. Eur J Biochem 260:885–895

    CAS  PubMed  Google Scholar 

  • Martin DM, Gershenzon J, Bohlmann J (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol 132:1586–1599

    Article  CAS  PubMed  Google Scholar 

  • Paré PW, Tumlinson JH (1997) De novo biosynthesis of volatiles induced by insect herbivore in cotton plants. Plant Physiol 114:1161–1167

    PubMed  Google Scholar 

  • Paré PW, Tumlinson JH (1998) Cotton volatiles synthesized and released distal to the site of insect damage. Phytochemistry 47:521–526

    Google Scholar 

  • Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    Article  PubMed  Google Scholar 

  • Rao MV, Lee H, Creelman RA, Mullet JE, Davis KR (2000) Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 12:1633–1646

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 3, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Saona CR, Craft SJ, Paré PW, Henneberry TJ (2001) Exogenous methyl jasmonate induces volatile emissions in cotton plants. J Chem Ecol 27:679–695

    PubMed  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, O’Donnell P, Sammons M, Toshima H, Tumlinson JH (2003a) Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci USA 100:10552–10557

    CAS  PubMed  Google Scholar 

  • Schmelz EA, Alborn HT, Engelberth J, Tumlinson JH (2003b) Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Plant Physiol 133:295–306

    CAS  PubMed  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385:718–721

    Article  CAS  Google Scholar 

  • Sivasankar S, Sheldrick B, Rothstein SJ (2000) Expression of allene oxide synthase determines defense gene activation in tomato. Plant Physiol 122:1335–1342

    CAS  PubMed  Google Scholar 

  • Tamayo MC, Rufat M, Bravo JM, San Segund B (2000) Accumulation of a maize proteinase inhibitor in response to wounding and insect feeding, and characterization of its activity toward digestive proteinases of Spodoptera littoralis larvae. Planta 211:62–71

    Article  CAS  PubMed  Google Scholar 

  • Thaler JS (1999) Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399:686–688

    CAS  Google Scholar 

  • Thaler JS, Farag MA, Paré PW, Dicke M (2002) Jasmonate-deficient plants have reduced direct and indirect defenses against herbivores. Ecol Lett 5:764–774

    Google Scholar 

  • Turlings TC, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-injured corn. Proc Natl Acad Sci USA 89:8399–8402

    CAS  PubMed  Google Scholar 

  • Truitt CL, Wei HX, Paré PW (2004) A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin. Plant Cell 16:523–532

    CAS  PubMed  Google Scholar 

  • Weidhase RA, Kramell HM, Lehmann J, Leibisch HW, Lerbs W, Parthier B (1987) Methyl jasmonate-induced changes in the polypeptide pattern of senescing barley leaf segments. Plant Sci 51:177–186

    CAS  Google Scholar 

  • Xu T, Zhou Q, Chen W, Zhang GR, He GF, Gu DX, Zhang WQ (2003) Involvement of jasmonate signaling pathway in the herbivore induced rice plant defense. Chin Sci Bull 48:1982–1987

    CAS  Google Scholar 

  • Zeringue HJ (1992) Effects of C6-C10 alkenals and alkanals on eliciting a defense response in the developing cotton ball. Phytochemistry 3:2305–2308

    Google Scholar 

Download references


We thank Blanca San Segundo for kindly providing the MPI antibody. This work was supported in part by the U.S. Department of Agriculture (grant no. 35320-9378), by the Herman Frasch Foundation for Chemical Research, and by the Robert A. Welch Foundation (grant no. D-478).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Paul W. Paré.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farag, M.A., Fokar, M., Abd, H. et al. (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta 220, 900–909 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: