Skip to main content
Log in

Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of Medicago truncatula

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The MtTrHb1 and MtTrHb2 genes of the model legume Medicago truncatula Gaertn. encode proteins homologous to truncated hemoglobins (TrHb) from plants and a range of different microorganisms. Induction of MtTrHb1 in root nodules and expression of MtTrHb2 in root nodules, as well as in mycorrhizal roots, were shown by quantitative real-time reverse transcription–polymerase chain reaction (RT–PCR). The promoters of both genes were PCR-amplified and fused to the gusAint coding region. By analysing these gusAint-fusions in transgenic root tissues, we were able to localize their activity in root nodules and in roots colonized by arbuscular mycorrhizal (AM) fungi. Whereas the promoter of MtTrHb1 was activated in the infected cells of the nitrogen-fixing zone of root nodules, the MtTrHb2 promoter was predominantly active in the nodule vascular tissue. This expression pattern correlates with the presence of an ‘organ-specific element’ (OSE)-like sequence in the MtTrHb1 promoter, which is not present in the MtTrHb2 regulatory unit. Concerning the AM symbiosis, only the MtTrHb2 promoter mediated an expression in arbuscule-containing cells and in the root vascular tissue of mycorrhizal root segments colonized by the fungus Glomus intraradices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–g
Fig. 4

Similar content being viewed by others

Abbreviations

AM :

Arbuscular mycorrhizal

BAC :

Bacterial artificial chromosome

dpi :

Days post inoculation

EST :

Expressed sequence tag

Hb :

Hemoglobin

Lb :

Leghemoglobin

NO :

Nitric oxide

OSE :

Organ-specific element

TC :

Tentative consensus sequence

TrHb :

Truncated hemoglobin

References

  • Appleby CA (1984) Leghemoglobin and Rhizobium respiration. Annu Rev Plant Physiol 35:443–476

    CAS  Google Scholar 

  • Arnon DI, Hoagland DR (1940) Crop production in artificial culture solutions and in soils with special reference to factors influencing yields and absorption of inorganic nutrients. Soil Sci 50:463–483

    CAS  Google Scholar 

  • Bonanomi A, Wiemken A, Boller T, Salzer P (2001) Local induction of a mycorrhiza-specific class III chitinase gene in cortical root cells of Medicago truncatula containing developing or mature arbuscules. Plant Biol 3:194–199

    Article  CAS  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    CAS  PubMed  Google Scholar 

  • Casse F, Boucher D, Julliot JS, Michel M, Denarie J (1979) Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol 113:229–242

    CAS  Google Scholar 

  • Cueto M, Hernandez-Perera O, Martin R, Bentura ML, Rodrigo J, Lamas S, Golvano MP (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398:159–164

    Article  CAS  PubMed  Google Scholar 

  • Cullimore J, Denarie J (2003) Plant sciences. How legumes select their sweet talking symbionts. Science 302:630-633

    Article  PubMed  Google Scholar 

  • Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770

    Article  CAS  PubMed  Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of non-mycorrhizal plant mutants (myc) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci 60:215–222

    Article  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  CAS  PubMed  Google Scholar 

  • Fedorova M, van de Mortel J, Matsumoto PA, Cho J, Town CD, VandenBosch KA, Gantt JS, Vance CP (2002) Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol 130:519–537

    Google Scholar 

  • Flogel U, Merx MW, Godecke A, Decking UKM, Schrader J (2001) Myoglobin: a scavenger of bioactive NO. Proc Natl Acad Sci USA 98:735–740

    Article  CAS  PubMed  Google Scholar 

  • Franche C, Diouf D, Laplaze L, Auguy F, Frutz T, Rio M, Duhoux E, Bogusz D (1998) Soybean (lbc3), Parasponia, and Trema hemoglobin gene promoters retain symbiotic and nonsymbiotic specificity in transgenic Casuarinaceae: implications for hemoglobin gene evolution and root nodule symbioses. Mol Plant Microbe Interact 11:887–894

    CAS  Google Scholar 

  • Frühling M, Roussel H, Gianinazzi-Pearson V, Pühler A, Perlick AM (1997) The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum. Mol Plant Microbe Interact 10:124–131

    PubMed  Google Scholar 

  • Gianinazzi-Pearson V (1997) Have common plant systems co-evolved in fungal and bacterial root symbioses? In: Legocki A, Bothe H, Pühler A (eds) Biological fixation of nitrogen for ecology and sustainable agriculture: NATO ASI Series, vol G39. Springer, Berlin Heidelberg New York, pp 321–324

  • Hänsch R, Koprek T, Mendel RR, Schulze J (1995) An improved protocol for eliminating endogenous beta-glucuronidase background in barley. Plant Sci 105:63–69

    Article  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  Google Scholar 

  • Herouart D, Baudouin E, Frendo P, Harrison J, Santos R, Jamet A, Van de Sype G, Touati D, Puppo A (2002) Reactive oxygen species, nitric oxide and glutathione: a key role in the establishment of the legume–Rhizobium symbiosis? Plant Physiol Biochem 40:619–624

    Article  CAS  Google Scholar 

  • Hohnjec N, Perlick AM, Puhler A, Kuster H (2003) The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant Microbe Interact 16:903–915

    CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MV (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Journet EP, El-Gachtouli N, Vernoud V, de Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V (2001) Medicago truncatula ENOD11: A novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol Plant Microbe Interact 14:737–748

    CAS  PubMed  Google Scholar 

  • Kundu S, Trent JT, Hargrove M (2003) Plants, humans and hemoglobins. Trends Plant Sci 8:387–393

    Article  CAS  PubMed  Google Scholar 

  • Küster H, Quandt HJ, Broer I, Perlick AM, Pühler A (1995) The promoter of the Vicia faba L. VfENOD-GRP3 gene encoding a glycine-rich early nodulin mediates a predominant gene expression in the interzone II–III region of transgenic Vicia hirsuta root nodules. Plant Mol Biol 29:759–772

    PubMed  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55:983–992

    Article  CAS  PubMed  Google Scholar 

  • Lum MR, Hirsch AM (2002) Roots and their symbiotic microbes: strategies to obtain nitrogen and phosphorus in a nutrient-limiting environment. J Plant Growth Regul 21:368–382

    Article  CAS  Google Scholar 

  • Mathesius U (2003) Conservation and divergence of signalling pathways between roots and soil microbes—the Rhizobium–legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls. Plant Soil 255:105–119

    Article  CAS  Google Scholar 

  • Mathieu C, Moreau S, Frendo P, Puppo A, Davies MJ (1998) Direct detection of radicals in intact soybean nodules: presence of nitric oxide–leghemoglobin complexes. Free Rad Biol Med 24:1242–1249

    Article  CAS  PubMed  Google Scholar 

  • Ouellet H, Ouellet Y, Richard C, Labarre M, Wittenberg B, Wittenberg J, Guertin M (2002) Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc Natl Acad Sci USA 99:5902–5907

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski K, Bisseling T (1996) Rhizobial and actinorrhizal symbioses: what are the shared features? Plant Cell 8:1899-1913

    Article  CAS  PubMed  Google Scholar 

  • Provorov NA, Borisov AY, Tikhonovich IA (2002) Developmental genetics and evolution of symbiotic structures in nitrogen-fixing nodules and arbuscular mycorrhiza. J Theor Biol 214:215–232

    Article  CAS  PubMed  Google Scholar 

  • Quandt HJ, Pühler A, Broer I (1993) Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol Plant Microbe Interact 6:699–706

    Google Scholar 

  • Salzer P, Corbiere H, Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208:319–325

    Article  CAS  Google Scholar 

  • Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Seregelyes C, Mustardy L, Ayaydin F, Sass L, Kovacs L, Endre G, Lukacs N, Kovacs I, Vass I, Kiss GB, Horvath GV, Dudits D (2000) Nuclear localization of a hypoxia-inducible novel non-symbiotic hemoglobin in cultured alfalfa cells. FEBS Lett 485:127

    Article  CAS  PubMed  Google Scholar 

  • Seregelyes C, Barna B, Hennig J, Konopka D, Pasternak TP, Lukacs N, Feher A, Horvath GV, Dudits D (2003) Phytoglobins can interfere with nitric oxide functions during plant growth and pathogenic responses: a transgenic approach. Plant Science 165:541–550

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

  • Stougaard J, Sandal N, Gron A, Kuhle A, Marcker K (1987) 5′ analysis of the soybean leghaemoglobin lbc3 gene: regulatory elements required for promoter activity and organ specificity. EMBO J 6:3565–3569

    CAS  Google Scholar 

  • Thorsteinsson MV, Bevan DR, Potts M, Dou Y, Eich RF, Hargrove MS, Gibson QH, Olson JS (1999) A cyanobacterial hemoglobin with unusual ligand binding kinetics and stability properties. Biochemistry 38:2117–2126

    Article  CAS  PubMed  Google Scholar 

  • Trinchant JG, Rigaud J (1982) Nitrite and nitric oxide as inhibitors of nitrogenase from soybean bacteroid. Appl Environ Microbiol 44:1385–1388

    CAS  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  PubMed  Google Scholar 

  • Vieweg MF, Frühling M, Quandt HJ, Heim U, Bäumlein H, Pühler A, Küster H, Perlick AM (2004) The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and non-legume plants. Mol Plant Microbe Interact 17:62–69

    CAS  PubMed  Google Scholar 

  • Watts RA, Hunt PW, Hvitved AN, Hargrove MS, Peacock WJ, Dennis ES (2001) A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Proc Natl Acad Sci USA 98:10119–10124

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg JB, Bolognesi M, Wittenberg BA, Guertin M (2002) Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J Biol Chem 277:871–874

    Article  CAS  PubMed  Google Scholar 

  • Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Kuster H, Krajinski F (2003) Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant Microbe Interact 16:306–314

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft for supporting this work in the frame of the SPP1084 (MolMyk) project Pe814/1-2 and Prof. Alfred Pühler for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Küster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieweg, M.F., Hohnjec, N. & Küster, H. Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of Medicago truncatula. Planta 220, 757–766 (2005). https://doi.org/10.1007/s00425-004-1397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1397-0

Keywords

Navigation