Skip to main content
Log in

Two isoforms of the A subunit of the vacuolar H+-ATPase in Lycopersicon esculentum: highly similar proteins but divergent patterns of tissue localization

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The plant vacuolar H+-translocating ATPase (V-ATPase, EC 3.6.1.34) generates a H+ electro-chemical gradient across the tonoplast membrane. We isolated two full-length cDNA clones (VHA-A1 and VHA-A2) from tomato (Lycopersicon esculentum Mill. cv. Large Cherry Red) coding for two isoforms of the V-ATPase catalytic subunit (V-ATPases A1 and A2). The cDNA clones encoding the two isoforms share 90% identity at the nucleotide level and 96% identity at the amino acid level. The 5′- and 3′-untranslated regions, however, are highly diverse. Both V-ATPase A1 and A2 isoforms encode polypeptides of 623 amino acids, with calculated molecular masses of 68,570 and 68,715, respectively. The expression of VHA-A1 and accumulation of V-ATPase A1 polypeptide were ubiquitous in all tissues examined. In response to salinity, the abundances of both transcript (VHA-A1) and protein (V-ATPase A1) of the A1 isoform in leaves were nearly doubled. In contrast to the A1 isoform, VHA-A2 transcript and V-ATPase A2 polypeptide were only detected in abundance in roots, and in minor quantities in mature fruit. In roots, accumulation of transcripts and polypeptides did not change in response to salinity for either isoform. Subcellular localization indicated that the highest levels of both V-ATPase A1 and A2 isoforms were in the tonoplast. However, significant quantities of both isoforms were detected in membranes associated with endoplasmic reticulum and/or Golgi. Immunoprecipitation of dissociated V1 domains using isoform-specific antibodies showed that V1 domains consist of either V-ATPase A1 or A2 catalytic subunit isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a,b
Fig. 5a,b
Fig. 6a,b
Fig. 7
Fig. 8a–c

Similar content being viewed by others

Abbreviations

ER :

Endoplasmic reticulum

EST :

Expressed sequence tag

IDPase :

Inosine diphosphatase

V-ATPase :

Vacuolar H+-translocating ATPase

V-PPase :

Vacuolar H+-pyrophosphatase

References

  • Arango M, Gevaudant F, Oufattole M, Boutry M (2003) The plasma membrane proton pump ATPase: the significance of gene subfamilies. Planta 216:355–365

    CAS  PubMed  Google Scholar 

  • Behre B, Ratajczak R, Luttge U (1992) Selective reconstitution of the tonoplast H+-ATPase of the crassulacean-acid metabolism plant Kalanchoe-daigremontiana. Bot Acta 105:260–265

    CAS  Google Scholar 

  • Binzel ML (1995) NaCl-induced accumulation of tonoplast and plasma-membrane H+-ATPase message in tomato. Physiol Plant 94:722–728

    Article  CAS  Google Scholar 

  • Binzel ML, Ratajczak R (2002) Function of membrane transport systems under salinity: tonoplast. In: Lauchli A, Luttge U (eds) Salinity: environment–plants–molecules. Kluwer, Dordrecht, pp 423–450

  • Cheng NH, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15:347–364

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–22

    CAS  Google Scholar 

  • Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52:1969–1980

    Article  CAS  PubMed  Google Scholar 

  • Fischer-Schliebs E, Ball E, Berndt E, Besemfelder-Butz E, Binzel ML, Drobny M, Muhlenhoff D, Muller ML, Rakowski K, Ratajczak R (1997) Differential immunological cross-reactions with antisera against the V-ATPase of Kalanchoe daigremontiana reveal structural differences of V-ATPase subunits of different plant species. Biol Chem 378:1131–1139

    CAS  PubMed  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    CAS  PubMed  Google Scholar 

  • Forgac M (2000) Structure, mechanism and regulation of the clathrin-coated vesicle and yeast vacuolar H+ATPases. J Exp Biol. 203:71–80

    Google Scholar 

  • Gogarten JP, Fichmann J, Braun Y, Morgan L, Styles P, Taiz SL, DeLapp K, Taiz L (1992) The use of antisense m-RNA to inhibit the tonoplast H+-ATPase in carrot. Plant Cell 4:851–864

    Article  CAS  PubMed  Google Scholar 

  • Goubet F, Mohnen D (1999) Subcellular localization and topology of homogalacturonan methyltransferase in suspension-cultured Nicotiana tabacum cells. Planta 209:112–117

    Article  CAS  PubMed  Google Scholar 

  • Harlow E, Lane D (1999) Using antibodies: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Herman EM, Li X, Su RT, Larsen P, Hsu H, Sze H (1994) Vacuolar-type H+-ATPases are associated with the endoplasmic reticulum and provacuoles of root tip cells. Plant Physiol 106:1313–1324

    PubMed  Google Scholar 

  • Hernando N, Bartkiewicz M, Collin-Osdoby P, Osdoby P, Baron R (1995) Alternative splicing generates a second isoform of the catalytic A subunit of the vacuolar H+-ATPase. Proc Natl Acad Sci USA 92:6087–6091

    CAS  PubMed  Google Scholar 

  • Kawamura Y, Arakawa K, Maeshima M, Yoshida S (2000) Tissue specificity of E subunit isoforms of plant vacuolar H+-ATPase and existence of isotype enzymes. J Biol Chem 275:6515–6522

    Article  CAS  PubMed  Google Scholar 

  • Klink HP, Haschke D, Kramer D, Luttge U (1990) Membrane-particles, proteins and ATPase activity of tonoplast vesicles of Mesembryanthemum crystallinum in the C-3 and CAM state. Bot Acta 103:24–31

    CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings Bioinf 5 (in press)

  • Lehr A, Kirsch M, Viereck R, Schiemann J, Rausch T (1999) cDNA and genomic cloning of sugar beet V-type H+-ATPase subunit A and c isoforms: evidence for coordinate expression during plant development and coordinate induction in response to high salinity. Plant Mol Biol 39:463–475

    Article  CAS  PubMed  Google Scholar 

  • Luttge U, Ratajczak R (1997) The physiology, biochemistry and molecular biology of the plant vacuolar ATPase. Adv Bot Res 25:253–296

    CAS  Google Scholar 

  • Muller M, Irkens-Kiesecker U, Rubinstein B, Taiz L (1996) On the mechanism of hyperacidification in lemon. Comparison of the vacuolar H+-ATPase activities of fruits and epicotyls. J Biol Chem 271:1916–1924

    Article  CAS  PubMed  Google Scholar 

  • Narsimhan ML, Binzel ML, Perez E, Chen ZT, Nelson DE, Singh NK, Bressan RA, Hasegawa P M (1991) NaCl regulation of tonoplast ATPase 70-kilodalton subunit m-RNA in tobacco cells. Plant Physiol 97:562–568

    Google Scholar 

  • Nelson N (1989) Structure, molecular genetics, and evolution of vacuolar H+-ATPases and its subunit structures. J Bioenerg Biomembr 21:553–571

    CAS  Google Scholar 

  • Padmanaban S, Lin X, Perera I, Kawamura Y, Sze H (2004) Differential expression of vacuolar H+-ATPase subunit c genes in tissues active in membrane trafficking and their roles in plant growth as revealed by RNAi. Plant Physiol 134:1514–1526

    Article  CAS  PubMed  Google Scholar 

  • Prince VE, Pickett FB (2002) Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 3:827–837

    Article  CAS  PubMed  Google Scholar 

  • Puopolo K, Kumamoto C, Adachi I, Forgac M (1991) A single gene encodes the catalytic “A” subunit of the bovine vacuolar H+-ATPase. J Biol Chem 266:24564–24572

    CAS  PubMed  Google Scholar 

  • Ratajczak R (2000) Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim Biophys Acta 1465:17–36

    Article  CAS  PubMed  Google Scholar 

  • Reuveni M, Bennett AB, Bressan RA, Hasegawa PM (1990) Enhanced H+ transport capacity and ATP hydrolysis activity of the tonoplast H+-ATPase after NaCl adaptation. Plant Physiol 94:524–530

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Starke T, Gogarten JP (1993) A conserved intron in the V-ATPase A subunit genes of plants and algae. FEBS Lett 315:252–258

    Article  CAS  PubMed  Google Scholar 

  • Sze H, Schumacher K, Muller ML, Padmanaban S, Taiz L (2002) A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H+-ATPase. Trends Plant Sci 7:157–161

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Sze H (1992) Proton transport activity of the purified vacuolar H+-ATPase from oats—direct stimulation by Cl. Plant Physiol 99:925–931

    CAS  Google Scholar 

  • Wilkens S, Vasilyeva E, Forgac M (1999) Structure of the vacuolar ATPase by electron microscopy. J Biol Chem 274:31804–31810

    Article  CAS  PubMed  Google Scholar 

  • Williams A, Ibrahim IT (1981) Improved spectrophotometric methods for the assay of carbodiimides. J Am Chem Soc 114:173–176

    CAS  Google Scholar 

  • Zhen R, Kim EJ, Rea PA (1994) Localization of cytosolically oriented maleimide-reactive domain of vacuolar H+-pyrophosphatase. J Biol Chem 269:23342–23350

    CAS  PubMed  Google Scholar 

  • Zhigang A, Low R, Rausch T, Luttge U, Ratajczak R (1996) The 32 kDa tonoplast polypeptide D-i associated with the V-type H+-ATPase of Mesembryanthemum crystallinum L in the CAM state: a proteolytically processed subunit B? FEBS Lett 389:314–318

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. R. Ratajczak (Darmstadt University of Technology, Darmstadt, Germany) for antibodies (ATP95) for the detection of V-ATPase holoenzyme, Prof. P.A. Rea (University of Pennsylvania, PA, USA) for antibodies (326) for the detection of vacuolar H+-pyrophosphatase and Dr. K.D. Hirschi (Baylor College of Medicine, Houston, TX) for providing BiP and PAQ1 antibodies. This work was supported in part by the U.S. Department of Agriculture (NRICGP #98-35100-6125 to M.L.B.) and the Texas Agricultural Experiment Station. The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marla L. Binzel.

Additional information

The nucleotide sequences for the V-ATPase A1 and V-ATPase A2 cDNA clones have been deposited in the GenBank database under the GenBank Accession Numbers AY177247 and AY178911, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bageshwar, U.K., Taneja-Bageshwar, S., Moharram, H.M. et al. Two isoforms of the A subunit of the vacuolar H+-ATPase in Lycopersicon esculentum: highly similar proteins but divergent patterns of tissue localization. Planta 220, 632–643 (2005). https://doi.org/10.1007/s00425-004-1377-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1377-4

Keywords

Navigation