Skip to main content
Log in

Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Native and wound periderm was isolated enzymatically from potato (Solanum tuberosum L. cv. Desirée) tubers at different time intervals between 0 days up to 4 weeks after harvesting. Wound periderm formation was induced by carefully removing native periderm from freshly harvested tubers before storage. The chemical composition of lipids (waxes) obtained by chloroform extraction, as well as the monomeric composition of native and wound suberin polymer after transesterification by boron trifluoride/methanol, was analyzed using gas chromatography and mass spectrometry. Both types of periderm contained up to 20% extractable lipids. Besides linear long-chain aliphatic wax compounds, alkyl ferulates were detected as significant constituents. In wound periderm they amounted to more than 60% of the total extracts. Within 1 month of storage, suberin amounts in the polymer increased 2-fold in native periderm (180 μg cm−2), whereas in wound periderm about 75.0 μg cm−2 suberin polymer was newly synthesized. Native potato tuber periderm developed a very efficient transport barrier for water with permeances decreasing from 6.4×10−10 m s−1 to 5.5×10−11 m s−1 within 1 month of storage. However, the water permeability of wound periderm was on average 100 times higher with permeances decreasing from 4.7×10−8 m s−1 after 3 days to only 5.4×10−9 m s−1 after 1 month of storage, although suberin and wax amounts in wound periderm amounted to about 60% of native periderm. From this result it must be concluded that the occurrence of suberin with wax depositions in cell walls does not necessarily allow us to conclude that these cell walls must be nearly perfect barriers to water transport. In addition to the occurrence of the lipophilic biopolymer suberin and associated waxes, the still unknown molecular arrangement and precisely localized deposition of suberin within the cell wall must contribute to the efficiency of suberin as a barrier to water transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2
Fig. 3 a
Fig. 4 a
Fig. 5 a
Fig. 6a,b
Fig. 7 a
Fig. 8 a
Fig. 9 a
Fig. 10

Similar content being viewed by others

Abbreviations

FTIR :

Fourier-transformed infrared

References

  • Agrios GN (1997) Plant pathology. Academic Press, San Diego

  • Becker M, Kerstiens G, Schönherr J (1986) Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees 1:54–60

    CAS  Google Scholar 

  • Bernards MA, Lewis NG (1998) The macromolecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry 47:915–933

    Article  CAS  PubMed  Google Scholar 

  • Bernards MA, Fleming WD, LIewellyn DB, Priefer R, Yang X, Sabatino A, Plourde GL (1999) Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol 121:135–145

    Article  CAS  PubMed  Google Scholar 

  • Bernards MA, Susag LM, Bedgar DL, Anterola AM, Lewis NG (2000) Induced phenylpropanoid metabolism during suberization and lignification: a comparative analysis. J Plant Physiol 157:601–607

    CAS  PubMed  Google Scholar 

  • Brieskorn CH, Binnemann PH (1974) Chemische Zusammensetzung des Suberins in der Kartoffelschale. Z Lebensm Unter Forsch 1154:213–222

    Google Scholar 

  • Borg-Olivier O, Monties B (1993) Lignin, suberin, phenolic acids and tyramine in the suberized, wound-induced potato periderm. Phytochemistry 32:601–606

    Article  CAS  Google Scholar 

  • Brundrett MC, Kendrick B, Peterson CA (1991) Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol–glycerol. Biotech Histochem 66:111–116

    CAS  PubMed  Google Scholar 

  • Effinger N (2002) Apoplastische Barrieren in den Wurzeln von Reis und Mais: Chemische Zusammensetzung und Einfluss auf die radiale hydraulische Leitfähigkeit. Diploma Thesis, University of Würzburg

    Google Scholar 

  • Ersoz M, Duncan HJ (1995) Permeability of periderm and cuticular membranes to alkali cations. J Coll Interf Sci 169:143–148

    Article  CAS  Google Scholar 

  • Espelie KE, Kolattukudy PE (1979) Composition of the aliphatic components of ‘suberin’ from the bundle sheaths of Zea mays leaves. Plant Sci Lett 15:225–230

    CAS  Google Scholar 

  • Esau K (1977) Anatomy of seed plants. New York, John Wiley

  • Gerlach D (1984) Botanische Mikrotechnik. Thieme, Stuttgart

  • Graca J, Pereira H (2000) Suberin structure in potato periderm: glycerol, long-chain monomers, and glyceryl and feruloyl dimers. J Agric Food Chem 48:5476–5483

    Article  CAS  PubMed  Google Scholar 

  • Groh B, Hübner C, Lendzian KJ (2002) Water and oxygen permeance of phellems isolated from trees: the role of waxes and lenticels. Planta 215:794–801

    Article  CAS  PubMed  Google Scholar 

  • Hartmann K (2002) Struktur, Funktion und chemische Zusammensetzung suberinisierter Transportbarrieren im Apoplasten Höherer Pflanzen. Doctoral thesis, University of Bonn

  • Hartmann K, Peiter E, Koch K, Schubert S, Schreiber L (2002) Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis. Planta 215:14–25

    Article  CAS  PubMed  Google Scholar 

  • Karahara I, Shibaoka H (1994) The Casparian strip in pea epicotyls: effects of light on its development. Planta 192:269–275

    Article  Google Scholar 

  • Kolattukudy PE (1980) Biopolyesters of plants: cutin and suberin. Science 208:990–1000

    Google Scholar 

  • Kolattukudy PE, Agrawal VP (1974) Structure and composition of the aliphatic components of potato tuber skin. Lipids 9:682–691

    CAS  Google Scholar 

  • Leuschner Ch, Coners H, Icke R, Hartmann K, Effinger ND, Schreiber L (2004) Chemical composition of the periderm in relation to in situ water absorption rates of oak, beech and spruce fine roots. Ann For Sci (in press)

  • Lapierre C, Pollet B, Negrel J (1996) The phenolic domain of potato suberin: structural comparison with lignins. Phytochemistry 42:949–953

    Article  CAS  Google Scholar 

  • Matzke K, Riederer M (1991) A comparative study into the chemical constitution of cutins and suberins from Picea abies (L.) Karst., Quercus robur L., and Fagus sylvatica. Planta 185:233–245

    Article  CAS  Google Scholar 

  • Moire L, Schmutz A, Buchala AJ, Stark RE, Ryser U (1999) Glycerol is a suberin monomer. New experimental evidence for an old hypothesis. Plant Physiol 119:1137–1146

    Article  CAS  PubMed  Google Scholar 

  • Negrel J, Pollet B, Lapierre C (1996) Ether-linked ferulic acid amides in natural and wound periderms of potato tuber. Phytochemistry 43:1195–1199

    Article  CAS  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    Article  CAS  Google Scholar 

  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032

    Article  CAS  PubMed  Google Scholar 

  • Sabba RP, Lulai EC (2002) Histological analysis of the maturation of native and wound periderm in potato (Solanum tuberosum L.) tuber. Ann Bot 90:1–10

    Article  PubMed  Google Scholar 

  • Schönherr J (1982) Resistance of plant surfaces to water loss: transport properties of cutin, suberin and associated lipids. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, NS, vol 12B. Springer, Berlin, Heidelberg, New York, pp 154–179

  • Schönherr J, Lendzian KJ (1981) A simple and inexpensive method of measuring water permeability of isolated plant cuticular membranes. Z Pflanzenphysiol 102:321–327

    Google Scholar 

  • Schönherr J, Ziegler H (1980) Water permeability of betula periderm. Planta 147:345–354

    Google Scholar 

  • Schreiber L, Riederer M (1996) Ecophysiology of cuticular transpiration: comparative investigation of cuticular water permeability of plant species from different habitats. Oecologia 107:426–432

    Google Scholar 

  • Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50:1267–1280

    Article  CAS  Google Scholar 

  • Soliday CL, Dean BB, Kolattukudy PE (1978) Suberization: inhibition by washing and stimulation by abscisic acid in potato disks and tissue culture. Plant Physiol 61:170–174

    CAS  Google Scholar 

  • Stark RE, Sohn W, Pacciano RA Jr, Al-Bashir M, Garbow JR (1994) Following suberization in potato wound periderm by histochemical and solid-state 13C nuclear magnetic resonance methods. Plant Physiol 104:527–533

    CAS  PubMed  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    Article  CAS  Google Scholar 

  • Vogt E, Schönherr J, Schmidt HW (1983) Water permeability of periderm membranes isolated enzymatically from potato tubers (Solanum tuberosum L.). Planta 158:294–301

    CAS  Google Scholar 

  • Wilson CA, Peterson CA (1983) Chemical composition of the epidermal, hypodermal, endodermal and intervening cortical cell walls of various plant roots. Ann Bot 51:759–769

    Google Scholar 

  • Wu X, Lin J, Zhu J, Hu Y, Hartmann K, Schreiber L (2003) Casparian strips in needles of Pinus bungeana: isolation and chemical characterization. Physiol Plant 117:421–424

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Stark RE (2000) Biosynthesis, molecular structure, and domain architecture of potato suberin: a C-13 NMR study using isotopically labeled precursors. J Agric Food Chem 48:3298–3304

    Article  CAS  PubMed  Google Scholar 

  • Zeier J, Schreiber (1997) Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata: identification of the biopolymers lignin and suberin. Plant Physiol 113:1223–1231

    CAS  PubMed  Google Scholar 

  • Zeier J, Schreiber L (1998) Comparative investigation of primary and tertiary endodermal cell walls isolated from the roots of five monocotyledonous species: chemical composition in relation to fine structure. Planta 206:349–361

    Article  CAS  Google Scholar 

  • Zeier J, Schreiber L (1999) Fourier transform infrared-spectroscopic characterisation of isolated endodermal cell walls from plant roots: chemical nature in relation to anatomical development. Planta 209:537–542

    Article  CAS  PubMed  Google Scholar 

  • Zeier J, Goll A, Yokoyama M, Karahara I, Schreiber L (1999) Structure and chemical composition of endodermal and rhizodermal/hypodermal walls of several species. Plant Cell Environ 22:271–279

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (D.F.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Schreiber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, L., Franke, R. & Hartmann, K. Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration. Planta 220, 520–530 (2005). https://doi.org/10.1007/s00425-004-1364-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1364-9

Keywords

Navigation