Skip to main content
Log in

Nuclear fusions contribute to polyploidization of the gigantic nuclei in the chalazal endosperm of Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Somatic polyploidization is recognized as a means to increase gene expression levels in highly active metabolic cells. The most common mechanisms are endoreplication, endomitosis and cell fusion. In animals and plants the nuclei of multinucleate cells are usually prevented from fusing. Here, we report that the nuclei from the syncytial cyst of the chalazal endosperm of Arabidopsis thaliana (L.) Heynh. are polyploid with some intermediate ploidy levels that cannot be attributed to endoreplication, suggesting nuclear fusion. Analysis of isolated nuclei, together with fluorescent in situ hybridization (FISH), revealed that nuclei from the chalazal endosperm are two or three times bigger than the nuclei from the peripheral endosperm and have a corresponding increase in ploidy. Together with the consistent observation of adjoined nuclei, we propose that nuclear fusion contributes, at least in part, to the process of polyploidization in the chalazal endosperm. Confocal analysis of intact seeds further suggested that free nuclei from the peripheral endosperm get incorporated into the chalazal cyst and likely participate in nuclear fusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–g
Fig. 2a–e
Fig. 3a–f
Fig. 4a–g

Similar content being viewed by others

Abbreviations

BAC :

Bacterial artificial chromosome

CZE :

Chalazal endosperm

DAPI :

4,6-Diamino-2-phenylindole

FISH :

Fluorescent in situ hybridization

NOR :

Nucleolar organizing region

NCD :

Nuclear cytoplasmic domain

PEN :

Peripheral endosperm

References

  • Baroux C, Spillane C, Grossniklaus U (2002) Evolutionary origins of the endosperm in flowering plants. Genome Biol 3:reviews1026

    Article  PubMed  Google Scholar 

  • Barow M, Meister A (2003) Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ 26:571–584

    Google Scholar 

  • Berger F (2003) Endosperm: the crossroad of seed development. Curr Opin Plant Biol 6:4–50

    Article  Google Scholar 

  • Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F (2001) Dynamic analyses of the expression of the HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13:495–509

    Article  CAS  PubMed  Google Scholar 

  • Brodsky WY, Uryvaeva IV (1977) Cell polyploidy: its relation to tissue growth and function. Int Rev Cytol 50:275–332

    CAS  PubMed  Google Scholar 

  • Brown RC, Lemmon BE (2001) The cytoskeleton and spatial control of cytokinesis in the plant life cycle. Protoplasma 215:35–49

    CAS  PubMed  Google Scholar 

  • Brown RC, Lemmon BE, Nguyen H, Olsen OA (1999) Development of endosperm in Arabidopsis thaliana. Sex Plant Reprod 12:32–42

    Article  Google Scholar 

  • Ceccarelli M, Morosi L, Cionini PG (1998) Chromocenter association in plant cell nuclei: determinants, functional significance, and evolutionary implications. Genome 41:96–103

    Article  Google Scholar 

  • Chiavarino AM, Rosato M, Manzanero S, Jimenez G, Gonzalez-Sanchez M, Puertas MJ (2000) Chromosome nondisjunction and instabilities in tapetal cells are affected by B chromosomes in maize. Genetics 155:889–897

    CAS  PubMed  Google Scholar 

  • Edgar BA, Orr-Weaver TL (2001) Endoreplication cell cycles: more for less. Cell 105:297–306

    Article  CAS  PubMed  Google Scholar 

  • Fowke LC, Bech-Hansen CW, Gamborg OL, Constabel F (1975) Electron-microscope observations of mitosis and cytokinesis in multinucleate protoplasts of soybean. J Cell Sci 18:491–507

    CAS  PubMed  Google Scholar 

  • Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci USA 99:14584–9

    Article  CAS  PubMed  Google Scholar 

  • Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJ, Zabel P, de Jong JH (1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9:421–30

    Article  CAS  PubMed  Google Scholar 

  • Golubovskaya I, Avalkina NA (1994) Protocol for preparing maize macrospore mother cells for the study of female meiosis and embryo-sac development. In: Freeling MVW (ed) The maize handbook. Springer, Berlin Heidelberg New York, pp 450–456

  • Grossniklaus U, Schneitz K (1998) The molecular and genetic basis of ovule and megagametophyte development. Semin Cell Dev Biol 9:227–38

    Article  CAS  PubMed  Google Scholar 

  • Guitton AE, Page DR, Chambrier P, Lionnet C, Faure JE, Grossniklaus U, Berger F (2004) Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131:2971–81

    Article  PubMed  Google Scholar 

  • Gupta S (2000) Hepatic polyploidy and liver growth control. Semin Cancer Biol 10:161–71

    Article  CAS  PubMed  Google Scholar 

  • Hans de Jong J, Fransz P, Zabel P (1999) High resolution FISH in plants—techniques and applications. Trends Plant Sci 4:258–263

    Article  PubMed  Google Scholar 

  • Kohler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. Embo J 22:4804–14

    Article  PubMed  Google Scholar 

  • Larkins BA, Dilkes BP, Dante RA, Coelho CM, Woo YM, Liu Y (2001) Investigating the hows and whys of DNA endoreduplication. J Exp Bot 52:183–92

    Article  CAS  PubMed  Google Scholar 

  • Lopes MA, Larkins BA (1993) Endosperm origin, development, and function. Plant Cell 5:1383–99

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Fransz PF, Ali HB, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697

    Article  CAS  PubMed  Google Scholar 

  • Mansfield SG, Briarty LG (1990) Development of the free-nuclear endosperm in Arabidopsis thaliana (L.). Arabidopsis Inf Serv 27:53–64

    Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  CAS  PubMed  Google Scholar 

  • Mazumdar A, Mazumdar M (2002) How one becomes many: blastoderm cellularization in Drosophila melanogaster. Bioessays 24:1012–22

    Article  CAS  PubMed  Google Scholar 

  • Nagl W (1976) DNA endoreduplication and polyteny understood as evolutionary strategies. Nature 261:614–5

    CAS  PubMed  Google Scholar 

  • Nguyen H, Brown RC, Lemmon BE (2000) The specialized chalazal endosperm in Arabidopsis thaliana and Lepidum virginicum (Brassicaceae). Protoplasma 212:99–100

    Google Scholar 

  • Otegui M, Staehelin LA (2000) Syncytial-type cell plates: a novel kind of cell plate involved in endosperm cellularization of Arabidopsis. Plant Cell 12:933–947

    Article  CAS  PubMed  Google Scholar 

  • Otegui MS, Capp R, Staehelin LA (2002) Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endoplasmic reticulum. Plant Cell 14:1311–27

    Article  CAS  PubMed  Google Scholar 

  • Ravid K, Lu J, Zimmet JM, Jones MR (2002) Roads to polyploidy: the megakaryocyte example. J Cell Physiol 190:7–20

    Article  CAS  PubMed  Google Scholar 

  • Raz V, Bergervoet JH, Koornneef M (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–52

    CAS  PubMed  Google Scholar 

  • Schnittger A, Hulskamp M (2002) Trichome morphogenesis: a cell-cycle perspective. Philos Trans R Soc Lond B Biol Sci 357:823–6

    Article  CAS  PubMed  Google Scholar 

  • Shemer G, Podbilewicz B (2000) Fusomorphogenesis: cell fusion in organ formation. Dev Dyn 218:30–51

    Article  CAS  PubMed  Google Scholar 

  • Sorensen MB, Mayer U, Lukowitz W, Robert H, Chambrier P, Jurgens G, Somerville C, Lepiniec L, Berger F (2002) Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development 129:5567–76

    Article  CAS  PubMed  Google Scholar 

  • Traas J, Hulskamp M, Gendreau E, Hofte H (1998) Endoreduplication and development: rule without dividing? Curr Opin Plant Biol 1:498–503

    Article  CAS  PubMed  Google Scholar 

  • Wigglesworth VB (1967) Polyploidy and nuclear fusion in the fat body of Rhodnius (Hemiptera). J Cell Sci 2:603–16

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Philippa Barrell for the protocol of improved Feulgen staining and for comments on the manuscript, and two anonymous reviewers for helpful suggestions. C.B. was supported by a fellowship from the Roche Research Foundation; the project was also supported by the University of Zürich and a Searle Scholarship to U.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ueli Grossniklaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baroux, C., Fransz, P. & Grossniklaus, U. Nuclear fusions contribute to polyploidization of the gigantic nuclei in the chalazal endosperm of Arabidopsis. Planta 220, 38–46 (2004). https://doi.org/10.1007/s00425-004-1326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1326-2

Keywords

Navigation