Skip to main content
Log in

Electron-microscopic structure of the V-ATPase from mung bean

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The vacuolar H+-ATPase from mung bean (Vigna radiata L. cv. Wilczek) was purified to homogeneity. The purified complex contained all the reported subunits from mung bean, but also included a 40-kDa subunit, corresponding to the membrane-associated subunit d, which has not previously been observed. The structure of the V-ATPase from mung bean was studied by electron microscopy of negatively stained samples. An analysis of over 6,000 single-particle images obtained by electron microscopy of the purified complex revealed that the complex, similar to other V-ATPases, is organized into two major domains V1 and Vo with overall dimensions of 25 nm×13.7 nm and a stalk region connecting the V1 and Vo domains. Several individual areas of protein density were observed in the stalk region, indicating its complexity. The projections clearly showed that the complex contained one central stalk and at least two peripheral stalks. Subcomplexes containing subunits A, B and E, dissociated from the tonoplast membrane by KI, were purified. The structure of the subcomplex was also studied by electron microscopy followed by single-molecule analysis of 13,000 projections. Our preliminary results reveal an area of high protein density at the bottom of the subcomplex immediately below the cavity formed by the A and B subunits, indicating the position of subunit E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a,b
Fig. 3a–d
Fig. 4a,b
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

MSA :

Multivariate statistical analysis

2D, 3D :

Two-, three-dimensional

V-ATPase:

Vacuolar H+-ATPase

References

  • Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    CAS  PubMed  Google Scholar 

  • Ames BN (1966) Assay of inorganic phosphate. Total phosphate and phosphatases. Methods Enzymol 8:115–118

    CAS  Google Scholar 

  • Arata Y, Baleja JD, Forgac M (2002) Localization of subunits D, E, and G in the yeast V-ATPase complex using cysteine-mediated cross-linking to subunit B. Biochemistry 41:11301–11307

    Article  CAS  PubMed  Google Scholar 

  • Boekema EJ, Ubbink-Kok T, Lolkema JS, Brisson A, Konings WN (1997) Visualization of a peripheral stalk in V-type ATPase: evidence for the stator structure essential to rotational catalysis. Proc Natl Acad Sci USA 94:14291–14293

    Google Scholar 

  • Boekema EJ, van Breemen JF, Brisson A, Ubbink-Kok T, Konings WN, Lolkema JS (1999) Connecting stalks in V-type ATPase. Nature 401:37–38

    Article  CAS  PubMed  Google Scholar 

  • Boyer PD (1999) Molecular motors: what makes ATP synthase spin? Nature 402:247–249

    Article  CAS  PubMed  Google Scholar 

  • Chaban Y, Ubbink-Kok T, Keegstra W, Lolkema JS, Boekema EJ (2002) Composition of the central stalk of the Na+-pumping V-ATPase from Caloramator fervidus. EMBO Rep 3:982–987

    Article  CAS  PubMed  Google Scholar 

  • Domgall I, Venzke D, Lüttge U, Ratajczak R, Böttcher B (2002) Three-dimensional map of a plant V-ATPase based on electron microscopy. J Biol Chem 277:13115–13121

    Article  CAS  PubMed  Google Scholar 

  • Forgac M (1999) Structure and properties of the vacuolar (H+)-ATPases. J Biol Chem 274:12951–12954

    Article  CAS  PubMed  Google Scholar 

  • Finbow MF, Harrison MA (1997) The vacuolar H+-ATPase: a universal proton pump of eukaryotes. Biochem J 324:697–712

    CAS  PubMed  Google Scholar 

  • Graham LA, Powell B, Stevens TH (2000) Composition and assembly of the yeast vacuolar H(+)-ATPase complex. J Exp Biol 203:61–70

    Google Scholar 

  • Grüber G, Radermacher M, Ruiz T, Godovac-Zimmermann J, Canas B, Kleine-Kohlbrecher D, Huss M, Harvey WR, Wieczorek H (2000) Three-dimensional structure and subunit topology of the V1 ATPase from Manduca sexta midgut. Biochemistry 39:8609–8616

    Article  PubMed  Google Scholar 

  • Grüber G, Wieczorek H, Harvey WR, Müller V (2001) Structure–function relationships of A-, F- and V-ATPases. J Exp Biol 204:2597–2605

    PubMed  Google Scholar 

  • Harrison MA, Finbow ME, Findlay JBC (1997) Postulate for the mechanism of the vacuolar H+-ATPase (hypothesis). Mol Membr Biol 14:1–3

    CAS  PubMed  Google Scholar 

  • Hegerl R (1996) The EM program package: a platform for image processing in biological electron microscopy. J Struct Biol 116:30–34

    Article  PubMed  Google Scholar 

  • Kawamura Y, Arakawa K, Maeshima M, Yoshida S (2000) Tissue specificity of E subunit isoforms of plant vacuolar H+-ATPase and existence of isotype enzymes. J Biol Chem 275:6515–6522

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Lewis Farr A, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Marin BP (1985) Biochemistry and function of vacuolar adenosine triphosphatase in fungi and plants. Springer, Berlin Heidelberg New York

  • Matsuura-Endo C, Maeshima M, Yoshida S (1990) Subunit composition of vacuolar membrane H+-ATPase from mung bean. Eur J Biochem 187:745–751

    CAS  PubMed  Google Scholar 

  • Murata T, Arechaga I, Fearnley IM, Kakinuma Y, Yamato I, Walker JE (2003) The membrane domain of the Na+-motive V-ATPase from Enterococcus hirae contains a heptameric rotor. J Biol Chem 278:21162–21167

    Article  CAS  PubMed  Google Scholar 

  • Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    Article  CAS  PubMed  Google Scholar 

  • Pali T, Finbow ME, Holzenburg A, Findlay JB, Marsh D (1995) Lipid–protein interactions and assembly of the 16-kDa channel polypeptide from Nephrops norvegicus. Studies with spin-label electron spin resonance spectroscopy and electron microscopy. Biochemistry 34:9211–9218

    CAS  PubMed  Google Scholar 

  • Radermacher M, Ruiz T, Harvey WR, Wieczorek H, Grüber G (1999) Molecular architecture of Manduca sexta midgut V1 ATPase visualized by electron microscopy. FEBS Lett 453:383–386

    Article  CAS  PubMed  Google Scholar 

  • Radermacher M, Ruiz T, Wieczorek H, Grüber G (2001) The structure of the V1-ATPase determined by three-dimensional electron microscopy of single particles. J Struct Biol 135:26–37

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak R (2000) Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim Biophys Acta 1465:17–36

    Article  CAS  PubMed  Google Scholar 

  • Rizzo VF, Coskun Ü, Radermacher M, Ruiz T, Armbrüster A, Grüber G (2003) Resolution of the V1 ATPase from Manduca sexta into subcomplexes and visualization of an ATPase-active A3B3EG complex by electron microscopy. J Biol Chem 278:270–275

    Article  CAS  PubMed  Google Scholar 

  • Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705

    CAS  PubMed  Google Scholar 

  • Sze H (1985) H+-translocationg ATPase: advances using membrane vesicles. Annu Rev Plant Physiol 36:175–208

    CAS  Google Scholar 

  • Sze H, Ward MW, Lai S (1992) Vacuolar H+-translocating ATPases from plants: structure, function, and isoforms. J Bioenerg Biomembr 24:371–382

    CAS  PubMed  Google Scholar 

  • Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+-Pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689

    Google Scholar 

  • Ubbink-Kok T, Boekema EJ, van Breemen JFL, Brisson A, Konings WN, Lolkema JS (2000) Stator structure and subunit composition of the V1/V0 Na+-ATPase of the thermophilic bacterium Caloramator fervidus. J Mol Biol 296:311–321

    Article  CAS  PubMed  Google Scholar 

  • Wilkens S, Forgac M (2001) Three-dimensional structure of the vacuolar ATPase proton channel by electron microscopy. J Biol Chem 276:44064–44068

    Article  CAS  PubMed  Google Scholar 

  • Wilkens S, Vasilyeva E, Forgac M (1999) Structure of the vacuolar ATPase by electron microscopy. J Biol Chem 274:31804–31810

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Myers M, Forgac M (1992) Characterization of the Vo domain of the coated vesicle (H+)-ATPase. J Biol Chem 267:9773–9778

    CAS  PubMed  Google Scholar 

  • Zimniak L, Dittrich P, Gogarten JP, Kibak H, Taiz L (1988) The cDNA sequence of the 69-kDa subunit of the carrot vacuolar H+-ATPase. Homology to the beta-chain of F0F1-ATPases. J Biol Chem 263:9102–9112

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Prof. Fuyu Yang for continuous support and crucial advice on experiments. We thank G. Pfeifer and R. Hegerl for help with the EM program. This work was supported by grants from the Chinese Academy of Sciences (KSCX2-2-05) and the Third World Academy of Sciences (00-238 RG/Bio/AS) to Xujia Zhang. We thank Sarah Perrett and Judy Smith for their help in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xujia Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Zhang, X. Electron-microscopic structure of the V-ATPase from mung bean. Planta 219, 948–954 (2004). https://doi.org/10.1007/s00425-004-1298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1298-2

Keywords