Skip to main content
Log in

Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Leaf senescence can be triggered by a high availability of carbon relative to nitrogen or by external application of abscisic acid (ABA). Most Arabidopsis mutants with decreased sugar sensitivity during early plant development are either ABA insensitive (abi mutants) or ABA deficient (aba mutants). To analyse the interactions of carbon, nitrogen and ABA in the regulation of senescence, wild-type Arabidopsis thaliana (L.) Heynh. and aba and abi mutants were grown on medium with varied glucose and nitrogen supply. On medium containing glucose in combination with low, but not in combination with high nitrogen supply, senescence was accelerated and sucrose, glucose and fructose accumulated strongly. In abi mutants that are not affected in sugar responses during early development (abi1-1 and abi2-1), we observed no difference in the sugar-dependent regulation of senescence compared to wild-type plants. Similarly, senescence was not affected in the sugar-insensitive abi4-1 mutant. In contrast, the abi5-1 mutant did exhibit a delay in senescence compared to its wild type. As ABA has been reported to induce senescence and ABA deficiency results in sugar insensitivity during early development, we expected senescence to be delayed in aba mutants. However, the aba1-1 and aba2-1 mutants showed accelerated senescence compared to their wild types on glucose-containing medium. Our results show that, in contrast to sugar signalling in seedlings, ABA is not required for the sugar-dependent induction of leaf senescence. Instead, increased sensitivity to osmotic stress could have triggered early senescence in the aba mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3a, b
Fig. 4a, b
Fig. 5a–d
Fig. 6a–d
Fig. 7
Fig. 8a–c

Similar content being viewed by others

Abbreviations

ABA :

Abscisic acid

aba :

Abscisic acid deficient

abi :

Abscisic acid insensitive

F v /F m :

Maximum efficiency of photosystem II photochemistry

References

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, León P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Gen Dev 14:2085–2096

    CAS  Google Scholar 

  • Arroyo A, Bossi F, Finkelstein RR, León P (2003) Three genes that affect sugar sensing (Abscisic Acid Insensitive 4, Abscisic Acid Insensitive 5, and Constitutive Triple Response 1) are differentially regulated by glucose in Arabidopsis. Plant Physiol 133:231–242

    Article  CAS  PubMed  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    CAS  Google Scholar 

  • Brocard IM, Lynch TJ, Finkelstein RR (2002) Regulation and role of the Arabidopsis Abscisic Acid-Insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol 129:1533–1543

    Article  CAS  PubMed  Google Scholar 

  • Cheng W-H, Endo A, Zhou L, Penney J, Chen H-C, Arroyo A, León P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signalling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    Google Scholar 

  • Cramer GR (2002) Response of abscisic acid mutants of Arabidopsis to salinity. Funct Plant Biol 29:561–567

    CAS  Google Scholar 

  • Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granot D (1999) Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11:1253–1266

    CAS  PubMed  Google Scholar 

  • Finkelstein RR (1994) Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutation. Plant J 5:765–771

    Article  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell 10:1043–1054

    Google Scholar 

  • Geiger M, Haake V, Ludewig F, Sonnewald U, Stitt M (1999) The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant Cell Environ 22:1177–1199

    Article  Google Scholar 

  • Gonzáles-Guzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodríguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846

    Article  PubMed  Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158:1317–1323

    CAS  Google Scholar 

  • Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    Google Scholar 

  • Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S (2000) The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. Plant J 23:577–585

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Jorna ML, Brinkhorst-van der Swan DLC, Karssen CM (1982) The isolation of abscisic-acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 61:385–393

    CAS  Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic-acid insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383

    CAS  Google Scholar 

  • Laby RJ, Kincaid MS, Kim D, Gibson SI (2000) The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J 23:587–596

    Article  CAS  PubMed  Google Scholar 

  • Léon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevart JAD, Koornneef M (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J 10:655–661

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua N-H (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98:4782–4787

    Article  CAS  PubMed  Google Scholar 

  • Ludewig F, Sonnewald U (2000) High CO2-mediated down-regulation of photosynthetic gene transcripts is caused by accelerated leaf senescence rather than sugar accumulation. FEBS Lett 479:19–24

    Article  CAS  PubMed  Google Scholar 

  • Martin T, Oswald O, Graham IA (2002) Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability. Plant Physiol 128:472–481

    Article  CAS  PubMed  Google Scholar 

  • Masclaux C, Valadier MH, Brugière N, Morot-Gaudry JF, Hirel B (2000) Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211:510–518

    CAS  PubMed  Google Scholar 

  • Merlot S, Mustilli A-C, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J (2002) Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J 30:601–609

    Article  CAS  PubMed  Google Scholar 

  • Miller A, Tsai CH, Hemphill D, Endres M, Rodermel S, Spalding M (1997) Elevated CO2 effects during leaf ontogeny. A new perspective on acclimation. Plant Physiol 115:1195–1200

    CAS  PubMed  Google Scholar 

  • Miller A, Schlagnhaufer C, Spalding M, Rodermel S (2000) Carbohydrate regulation of leaf development: prolongation of leaf senescence in Rubisco antisense mutants of tobacco. Photosynth Res 63:1–8

    Article  CAS  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  CAS  PubMed  Google Scholar 

  • Nie GY, Long SP, Garcia RL, Kimball BA, Lamorte RL, Pinter PJ, Wall GW, Webber AN (1995) Effects of free-air CO2 enrichment on the development of the photosynthetic apparatus in wheat, as indicated by changes in leaf proteins. Plant Cell Environ 18:855–864

    CAS  Google Scholar 

  • Nielsen TH, Krapp A, Röper-Schwarz U, Stitt M (1998) The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen. Plant Cell Environ 21:443–454

    Article  CAS  Google Scholar 

  • Oh SA, Park J-H, Lee GI, Paek KH, Park SK, Nam HG (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12:527–535

    CAS  PubMed  Google Scholar 

  • Ono K, Terashima I, Watanabe A (1996) Interaction between nitrogen deficit of a plant and nitrogen content in the old leaves. Plant Cell Physiol 37:1083–1089

    Google Scholar 

  • Oswald O, Martin T, Dominy PJ, Graham IA (2001) Plastid redox state and sugars: interactive regulators of nuclear-encoded photosynthetic gene expression. Proc Natl Acad Sci USA 98:2047–2054

    CAS  PubMed  Google Scholar 

  • Paul MJ, Driscoll SP (1997) Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source:sink imbalance. Plant Cell Environ 20:110–116

    Article  CAS  Google Scholar 

  • Price J, Li T-C, Kang SG, Na JK, Jang J-C (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132:1424–1438

    Article  CAS  PubMed  Google Scholar 

  • Quesada V, Ponce MR, Micol JL (2000) Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana. Genetics 154:421–436

    CAS  PubMed  Google Scholar 

  • Quick WP, Schurr U, Fichtner K, Schulze E-D, Rodermel SR, Bogorad L, Stitt M (1991) The impact of decreased Rubisco on photosynthesis, growth, allocation and storage in tobacco plants which have been transformed with antisense rbcS. Plant J 1:51–58

    CAS  Google Scholar 

  • Quirino BF, Reiter WD, Amasino RD (2001) One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated. Plant Mol Biol 46:447–457

    Article  CAS  PubMed  Google Scholar 

  • Rock CD, Zeevaart JAD (1991) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci USA 88:7496–7499

    CAS  PubMed  Google Scholar 

  • Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW (2001) Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26:421–433

    Article  CAS  PubMed  Google Scholar 

  • Schaberg PG, van den Berg AK, Murakami PF, Shane JB, Donnelly JR (2003) Factors influencing red expression in autumn foliage of sugar maple trees. Tree Physiol 23:325–333

    CAS  PubMed  Google Scholar 

  • Scheible W-R, Gonzáles-Fontes A, Lauerer M, Müller-Röber B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798

    Google Scholar 

  • Scheible W-R, Krapp A, Stitt M (2000) Reciprocal diurnal changes of phosphoenolpyruvate carboxylase expression and cytosolic pyruvate kinase, citrate synthase and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves. Plant Cell Environ 23:1155–1167

    Article  CAS  Google Scholar 

  • Söderman EM, Brocard IM, Lynch TJ, Finkelstein RR (2000) Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signalling networks. Plant Physiol 124:1752–1765

    Article  PubMed  Google Scholar 

  • Stessman D, Miller A, Spalding M, Rodermel S (2002) Regulation of photosynthesis during Arabidopsis leaf development in continuous light. Photosynth Res 72:27–37

    Article  CAS  Google Scholar 

  • Stitt M, Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621

    Google Scholar 

  • Stitt M, Lilley RMcC, Gerhardt R, Heldt HW (1989) Metabolite levels in specific cells and subcellular compartments of plant leaves. Methods Enzymol 174:518–552

    CAS  Google Scholar 

  • Sun J, Gibson KM, Kiirats O, Okita TW, Edwards GE (2002) Interactions of nitrate and CO2 enrichment on growth, carbohydrates, and Rubisco in Arabidopsis starch mutants. Significance of starch and hexose. Plant Physiol 130:1573–1583

    Article  CAS  PubMed  Google Scholar 

  • Van Oosten J-JM, Gerbaud A, Huijser C, Dijkwel PP, Chua N-H, Smeekens SCM (1997) An Arabidopsis mutant showing reduced feedback inhibition of photosynthesis. Plant J 12:1011–1020

    Article  PubMed  Google Scholar 

  • Wingler A, von Schaewen A, Leegood RC, Lea PJ, Quick WP (1998) Regulation of leaf senescence by cytokinin, sugars, and light. Effects on NADH-dependent hydroxypyruvate reductase. Planta 116:329–335

    Article  CAS  Google Scholar 

  • Wingler A, Marès M, Pourtau N (2004) Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. New Phytol 161:781–789

    Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ 26:1621–1631

    Article  CAS  Google Scholar 

  • Yoshida S, Ito M, Nishida I, Watanabe A (2002) Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogen-defence responses in Arabidopsis thaliana. Plant J 29:427–437

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant (31/P16341) from the Biotechnology and Biological Sciences Research Council and a PhD studentship (NER/S/A/2003/11379) from the Natural Environment Research Council, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Wingler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pourtau, N., Marès, M., Purdy, S. et al. Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence. Planta 219, 765–772 (2004). https://doi.org/10.1007/s00425-004-1279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1279-5

Keywords

Navigation