Planta

, Volume 218, Issue 6, pp 958–964 | Cite as

Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia

  • Anne Frey
  • Béatrice Godin
  • Magda Bonnet
  • Bruno Sotta
  • Annie Marion-Poll
Original Article

Abstract

The role of maternally derived abscisic acid (ABA) during seed development has been studied using ABA-deficient mutants of Nicotiana plumbaginifolia Viviani. ABA deficiency induced seed abortion, resulting in reduced seed yield, and delayed growth of the remaining embryos. Mutant grafting onto wild-type stocks and reciprocal crosses indicated that maternal ABA, synthesized in maternal vegetative tissues and translocated to the seed, promoted early seed development and growth. Moreover ABA deficiency delayed both seed coat pigmentation and capsule dehiscence. Mutant grafting did not restore these phenotypes, indicating that ABA synthesized in the seed coat and capsule envelope may have a positive effect on capsule and testa maturation. Together these results shed light on the positive role of maternal ABA during N. plumbaginifolia seed development.

Keywords

Abscisic acid Dormancy Mutant Nicotiana Seed 

Abbreviations

ABA

Abscisic acid

DAP

Days after pollination

g

Grafted

Wt

Wild-type

Notes

Acknowledgements

We thank Helen North and Isabelle Debeaujon for their critical reading of the manuscript. We also thank Krystyna Gofron and Michel Lebrusq for technical assistance with plant culture.

References

  1. Alonso-Blanco C, Blankestijn-De Vries H, Hanhart CJ, Koornneef K (1999) Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc Natl Acad Sci USA 96:4710–4717CrossRefPubMedGoogle Scholar
  2. Audran C, Borel C, Frey A, Sotta B, Meyer C, Simmoneau T, Marion-Poll A (1998) Expression studies of the zeaxanthin epoxidase gene in Nicotiana plumbaginifolia. Plant Physiol 118:1021–1028CrossRefPubMedGoogle Scholar
  3. Bittner F, Oreb M, Mendel RR (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276:40381–40384CrossRefPubMedGoogle Scholar
  4. Borisjuk L, Rolletschek H, Wobus U, Weber H (2003) Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds. J Exp Bot 54:503–512CrossRefPubMedGoogle Scholar
  5. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743Google Scholar
  6. Duckham SC, Lindforth RST, Taylor IB (1991) Abscisic acid-deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin. Plant Cell Environ 14:601–606Google Scholar
  7. Frey A, Audran C, Marin E, Sotta B, Marion-Poll A (1999) Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression. Plant Mol Biol 39:1267–1274CrossRefPubMedGoogle Scholar
  8. Hattori T, Vasil V, Rosenkrans L, Hannah LC, McCarty DR, Vasil IK (1992) The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev 6:609–618PubMedGoogle Scholar
  9. Hilhorst HWM, Downie B (1995) Primary dormancy in tomato (Lycopersicon esculentum cv. Moneymaker): studies with the sitiens mutant. J Exp Bot 47:89–97Google Scholar
  10. Karssen CM, Brinkhorst-Van der Swan DLC, Breekland AD, Koornneef M (1983) Induction of seed dormancy during seed development by endogenous abscisic acid: studies on abscisic acid-deficient genotypes of Arabidopsis thaliana L. Heynh. Planta 157:158–165Google Scholar
  11. Koornneef M, Hanhart CJ, Hilhorst HWM, Karssen CM (1989) In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol 90:463–469Google Scholar
  12. Kraepiel Y, Rousselin P, Sotta B, Kerhoas L, Einhorn J, Caboche M, Miginiac E (1994) Analysis of phytochrome- and ABA-deficient mutants suggests that ABA degradation is controlled by light in Nicotiana plumbaginifolia. Plant J 6:665–672Google Scholar
  13. Marin E, Marion-Poll A (1997) Tomato flacca mutant is impaired in ABA aldehyde oxidase and xanthine dehydrogenase activities. Plant Physiol Biochem 35:369–372Google Scholar
  14. Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A, Marion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15:2331–2342PubMedGoogle Scholar
  15. Nambara E, Marion-Poll A (2003) ABA action and interactions in seeds. Trends Plant Sci 8:195–244CrossRefPubMedGoogle Scholar
  16. Meurs C, Basra AS, Karssen CM, van Loon LC (1992) Role of abscisic acid in the induction of desiccation tolerance in developing seeds of Arabidopsis thaliana. Plant Physiol 98:1484–1493Google Scholar
  17. Phillips J, Artsaenko O, Fiedler U, Horstmann C, Mock HP, Müntz K, Conrad U (1997) Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J 16:4489–4496PubMedGoogle Scholar
  18. Raz V, Bergervoet JHW, Koornneef M (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–252PubMedGoogle Scholar
  19. Rock CD, Quatrano RS (1995) The role of hormones during seed development. In: Davies PJ (eds) Plant hormones. Kluwer, Dordrecht, pp 671–697Google Scholar
  20. Rock CD, Zeevaart JAD (1991) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci USA 88:7496–7499PubMedGoogle Scholar
  21. Sagi M, Scazzocchio C, Fluhr R (2002) The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. Plant J 31:305–317CrossRefPubMedGoogle Scholar
  22. Schwartz SH, Léon-Kloosterziel KM, Koornneef M, Zeevaart JAD (1997) Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol 114:161–166CrossRefPubMedGoogle Scholar
  23. Schwartz SH, Qin X, Zeevaart JAD (2003) Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol 131:1591–1601CrossRefPubMedGoogle Scholar
  24. Senger S, Mock HP, Conrad U, Manteuffel R (2001) Immunomodulation of ABA function affects early events in somatic embryo development. Plant Cell Rep 20:112–120CrossRefGoogle Scholar
  25. Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48CrossRefPubMedGoogle Scholar
  26. Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56CrossRefPubMedGoogle Scholar
  27. Xiong L, Ishitani M, Lee H, Zhu KJ (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Anne Frey
    • 1
  • Béatrice Godin
    • 1
  • Magda Bonnet
    • 2
  • Bruno Sotta
    • 2
  • Annie Marion-Poll
    • 1
  1. 1.Laboratoire de Biologie des SemencesUMR 204 INRA–INAPGVersailles CedexFrance
  2. 2.Laboratoire de Physiologie Cellulaire et Moléculaire des PlantesUMR 7632 CNRS–Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations