Advertisement

Planta

, Volume 218, Issue 4, pp 658–667 | Cite as

Gravity susception by buoyancy: floating lipid globules in sporangiophores of Phycomyces

  • F. Grolig
  • H. Herkenrath
  • T. Pumm
  • A. Gross
  • P. Galland
Original Article

Abstract

To elucidate the mechanisms of gravity susception that operate in the sporangiophore of Phycomyces blakesleeanus, we characterized the function and topography of a large apical complex of lipid globules. Stage-1 sporangiophores (without sporangium) possess a roughly spherical complex of 100–200 large lipid globules whose center is localized 110 μm below the apex. The complex of lipid globules (CLG) is rather stable and is kept in place by positioning forces that resist centrifugal accelerations of up to 150 g. The lipid globules possess an average diameter of 2 to 2.5 μm and a density of 0.791 g cm−3, which is below that of typical plant oleosomes. The potential energy which is generated by the buoyancy of a CLG of 100 globules is in the order of 10-17 to 10-16 J, which is 4 to 5 orders of magnitude above thermal noise. The formation of lipid globules can be supressed by raising stage-1 sporangiophores for 24 hs at 5°C. Sporangiophores with a reduced number of lipid globules display gravitropic bending angles that are 3 to 4 times smaller than those of sporangiophores with the normal number of lipid globules. The results suggest that the lipid globules function as gravisusceptors of Phycomyces and that buoyancy is the physical principle for their mode of action. The globules contain β-carotene and two distinct fluorescing pigments that are, however, dispensible for graviperception.

Keywords

Buoyancy gravitropism Lipid globules Phycomyces Sporangiophore Statolith 

Abbreviations

CLG

complex of lipid globules

Notes

Acknowledgement

This project was supported by grants from the Deutsche Forschungsgemeinschaft and by the DLR/BMBF. We are indebted to Agnes Debelius, Marko Göttig and Sigrid Völk for excellent technical assistance.

References

  1. Adam, G, Läuger P, Stark G (1977) Physikalische Chemie und Biophysik. Springer-Verlag, Berlin.Google Scholar
  2. Bergman K, Eslava AP, Cerdá-Olmedo E. (1973) Mutants of Phycomyces with abnormal phototropism. Mol Gen Genet 123:1-16PubMedGoogle Scholar
  3. Braun M (1997) Gravitropism in tip-growing cells. Planta 203: S11-S19PubMedGoogle Scholar
  4. Cerdá-Olmedo E (1987) Carotene. In: Cerdá-Olmedo E, Lipson ED (eds) Phycomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. pp 199–222Google Scholar
  5. Davies BH (1976) Carotenoids. In: Goodwin TW (ed) Chemistry and Biochemistry of Plant Pigments 2. Academic Press, London, New York, San Francisco, pp 38–165Google Scholar
  6. Dennison DS (1961) Tropic responses of Phycomyces sporangiophores to gravitational and centrifugal stimuli. J Gen Physiol 45:23–38PubMedGoogle Scholar
  7. Dennison DS, Roth CC (1967) Phycomyces sporangiophores: fungal stretch receptors. Science 156:1386–1388PubMedGoogle Scholar
  8. Eibel P, Schimek C, Fries V, Grolig F, Schapat T, Schmidt W, Schneckenburger H, Ootaki T, Galland P (2000) Statoliths in Phycomyces: characterization of octahedral protein crystals. Fung Gen Biol 29:211–220CrossRefGoogle Scholar
  9. Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecules mechanics: piconewton forces and nanometere steps. Nature 368:113–119PubMedGoogle Scholar
  10. Fries V, Krockert T, Grolig F, Galland P (2002) Statoliths in Phycomyces: spectrofluorometric characterization of octahedral protein crystals. J Plant Physiol 159:39–47Google Scholar
  11. Graser M (1919) Untersuchungen über das Wachstum und die Reizbarkeit der Sporangienträger von Phycomyces nitens. Bot Centralbl (Beih) 36:, 414–493Google Scholar
  12. Galland P, Wallacher Y, Finger H, Hannappel M, Tröster S, Bold E, Grolig F (2002) Tropisms in Phycomyces: sine law for gravitropism, exponential law for photogravitropic equilibrium. Planta 214:931–938PubMedGoogle Scholar
  13. Galland P, Finger H, Wallacher Y (2003) Gravitropism in Phycomyces: threshold determination on a clinostat centrifuge. J Plant Physiol in pressGoogle Scholar
  14. Howard J, Roberts, WM, Hudspeth AJ (1988) Mechanoelectrical transduction by hair cells. Ann Rev Biophys Chem 17:99–124CrossRefGoogle Scholar
  15. Jack TJ, Yatsu LY, Altschul AM (1967) Isolation and characterization of peanut sherosomes. Plant Physiol 42:585–597Google Scholar
  16. Kern VD, Hock B (1996) Gravitropismus bei Pilzen. Naturw Rdsch 49:174–180Google Scholar
  17. Kern VD, Mendgen K, Hock B (1997) Flammulina as a model system for fungal graviresponses. Planta 203: S23-S32PubMedGoogle Scholar
  18. Mark (1982)Google Scholar
  19. Meissner G, Delbrück M (1968) Carotene and retinal in Phycomyces mutants. Plant Physiol 43:1279–1283PubMedGoogle Scholar
  20. Ogorodnikova U, Sineshchekov O., Galland P (2002) Blue-light perception in stage-1 sporangiophores of Phycomyces: a role for apical lipid globules? J Plant Physiol 159:205–209Google Scholar
  21. Ootaki T, Lighty AC, Delbrück M, Hsu W-J (1973): Complementation between mutants of Phycomyces deficient with respect to carotenogenesis. Mol Gen Genet 121:57–70PubMedGoogle Scholar
  22. Ootaki T, Ito K, Abe M, Lazarova G, Miyazaki A, Tsuru T. (1995): Parameters governing gravitropic response of sporangiophores in Phycomyces blakesleeanus. Mycoscience 36, 263–270Google Scholar
  23. Quail PH (1979) Plant cell fractionation. Ann Rev Plant Physiol 30:425–484CrossRefGoogle Scholar
  24. Ruiz-Hidalgo MJ, Benito EP, Sandmann G, Eslava AP (1997) The phytoene dehydrogenase gene of Phycomyces: regulation of its expression by blue light and vitamin A. Mol Gen Genet 253:734–744PubMedGoogle Scholar
  25. Sack F (1991) Plant gravity sensing. Int Rev Cytol 127:193–252PubMedGoogle Scholar
  26. Sack F (1997) Plastids and gravitropic sensing. Planta 203: S63-S68PubMedGoogle Scholar
  27. Sawitzky H, Grolig F (1995) Phragmoplast of the green alga Spirogyra is functionally distinct from the higher plant phragmoplast. J Cell Biol 130:1359–1371PubMedGoogle Scholar
  28. Schimek C, Eibel P. Horie T, Galland P, Ootaki T (1999a) Protein crystals in Phycomyces sporangiophores are involved in graviperception. Adv Space Res 24:687–696CrossRefPubMedGoogle Scholar
  29. Schimek C, Eibel P, Grolig F, Horie T, Ootaki T, Galland P (1999b) Gravitropism in Phycomyces: a role for sedimenting protein crystals and for floating lipid globules. Planta 210:132–142CrossRefPubMedGoogle Scholar
  30. Shropshire W Jr (1971) Phototropic bending rate in Phycomyces as a function of average growth rate and cell radius. In: Broda E (ed) Proceedings of the 1st European Biophysics Congress, Vol 5, Springer-Lederer, Wien. pp 111–114Google Scholar
  31. Sievers A, Hensel W (1982) The nature of graviperception. In: Waring PF (ed) Plant Growth Substances. Academic Press, London, New York, pp. 499–506Google Scholar
  32. Sievers A, Buchen B, Hodick D (1996) Gravity sensing in tip-growing cells. Trends Plant Sci 1:273–279CrossRefPubMedGoogle Scholar
  33. Sutter RP (1975) Mutations affecting sexual development in Phycomyces blakesleeanus. Proc Natl Acad Sci. USA 72:127–130PubMedGoogle Scholar
  34. Tasaka M, Kato T, Fukaki H (1999) The endodermis and shoot gravitropism. Trends Plant Sci 4:103–107CrossRefPubMedGoogle Scholar
  35. Thornton RM (1968a) The fine structure of Phycomyces. I. Autophagic vesicles. J Ultrstr Res 21:269–280Google Scholar
  36. Thornton RM (1968b) The fine structure of Phycomyces. II. Organization of the stage I sporangiophore apex. Protoplasma 66:269–285Google Scholar
  37. Zalokar M (1969) Intracellular centrifugal separation of organelles in Phycomyces. J Cell Biol 41:494–509PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • F. Grolig
    • 1
  • H. Herkenrath
    • 1
  • T. Pumm
    • 1
  • A. Gross
    • 1
  • P. Galland
    • 1
  1. 1.Fachbereich Biologie/BotanikPhilipps-UniversitätMarburgGermany

Personalised recommendations