Skip to main content
Log in

Characterization of two rice DNA methyltransferase genes and RNAi-mediated reactivation of a silenced transgene in rice callus

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Two genomic clones (OsMET1-1, AF 462029 and OsMET1-2, TPA BK001405), each encoding a cytosine-5 DNA methyltransferase (MTase), were isolated from rice (Oryza sativa L.) BAC libraries. OsMET1-1 has an open reading frame of 4,566 nucleotides with 12 exons and 11 introns while OsMET1-2 has an open reading frame of 4,491 nucleotides with 11 exons and 10 introns. Although OsMET1-1 and OsMET1-2 have high sequence similarity overall, they share only 24% identity in exon 1, and intron 3 of OsMET1-1 is absent from OsMET1-2. As for other eukaryotic DNA MTases of the Dnmt1/MET l class, the derived amino acid sequences of OsMET1-1 and OsMET1-2 suggest that they are comprised of two-thirds regulatory domain and one-third catalytic domain. Most functional domains identified for other MTases were present in the rice MET1 sequences. Amino acid sequence comparison indicated high similarity (56–75% identity) of rice MET1 proteins to other plant MET1 sequences but limited similarity (approx. 24% identity) to animal Dnmt1 proteins. Genomic blot and database analysis indicated the presence of a single copy of OsMET1-1 (on chromosome 3) and single copy of OsMET1-2 (on chromosome 7). Ribonuclease protection assays revealed expression of both OsMET1-1 and OsMET1-2 in highly dividing cells, but the steady-state level of OsMET1-2 was 7- to 12-fold higher than that for OsMET1-1 in callus, root and inflorescence. The functional involvement of the rice DNA MTases in gene silencing was investigated using an RNAi strategy. Inverted repeat constructs of either the N- or C-terminal regions of OsMET1-1 were supertransformed into calli derived from a rice line bearing a silenced 35S-uidA-nos transgene. Restoration of uidA expression in the bombarded calli was consistent with the inactivation of maintenance methylation and with previous evidence for the involvement of methylation in silencing of this line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a–c
Fig. 3a, b
Fig. 4a, b
Fig. 5a, b
Fig. 6a, b

Similar content being viewed by others

Abbreviations

BAH:

bromo adjacent homology (domain)

GFP:

green fluorescent protein

GUS:

β-glucuronidase

MTase:

methyltransferase

RACE:

rapid amplification of cDNA ends

RT:

reverse transcription

35S:

cauliflower mosaic virus 35S promoter

uidA :

β-glucuronidase gene from Escherichia coli

References

  • Amedeo P, Habu Y, Afsar K, Scheid OM, Paszkowski J (2000) Disruption of the plant gene MOM releases transcriptional silencing of methylated genes. Nature 405:203–206

    Google Scholar 

  • Bahler M, Rhoads A (2002) Calmodulin signaling via the IQ motif. FEBS Lett 513:107–113

    Article  CAS  PubMed  Google Scholar 

  • Baroux C, Spillane C, Grossniklaus U (2002) Genomic imprinting during seed development. Adv Genet 46:165–214

    CAS  PubMed  Google Scholar 

  • Bartee L, Malagnac F, Bender J (2001) Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev 15:1753–1758

    Article  CAS  PubMed  Google Scholar 

  • Bernacchia G, Primo A, Giorgetti L, Pitto L, Cella R (1998) Carrot DNA-methyltransferase is encoded by two classes of genes with differing patterns of expression. Plant J 13:317–329

    Article  CAS  PubMed  Google Scholar 

  • Brackertz M, Boeke J, Zhang R, Renkawitz R (2002) Two highly related p66 proteins comprise a new family of potent transcriptional repressors interacting with MBD2 and MBD3. J Biol Chem 277:40958–40966

    Article  CAS  PubMed  Google Scholar 

  • Buchholz WG, Connell JP, Kumpatla SP, Hall TC (1998a) Molecular analysis of transgenic rice. Methods Mol Biol 81:397–415

    CAS  PubMed  Google Scholar 

  • Buchholz WG, Teng W, Wallace D, Ambler JR, Hall TC (1998b) Production of transgenic rice (Oryza sativa subspecies japonica cv. Taipei 309). Methods Mol Biol 81:383–396

    CAS  PubMed  Google Scholar 

  • Callebaut I, Courvalin JC, Mornon JP (1999) The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett 446:189–193

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Jacobsen SE (2002) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci USA 99:16491–16498

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Springer NM, Muszynski MG, Phillips RL, Kaeppler S, Jacobsen SE (2000) Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci USA 97:4979–4984

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury AM, Koltunow A, Payne T, Luo M, Tucker MR, Dennis ES, Peacock WJ (2001) Control of early seed development. Ann Rev Cell Dev Biol 17:677–699

    Article  CAS  Google Scholar 

  • Chu C, Bi Y (1975) Establishment of an efficient medium for anther culture of rice thorough comparative experiments on the nitrogen sources. Sci Sin 18:659–668

    Google Scholar 

  • Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990

    CAS  PubMed  Google Scholar 

  • Curradi M, Izzo A, Badaracco G, Landsberger N (2002) Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol 22:3157–3173

    Article  CAS  PubMed  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    CAS  PubMed  Google Scholar 

  • Feng Q, Cao R, Xia L, Erdjument-Bromage H, Tempst P, Zhang Y (2002) Identification and functional characterization of the p66/p68 components of the MeCP1 complex. Mol Cell Biol 22:536–546

    Article  CAS  PubMed  Google Scholar 

  • Finnegan EJ, Dennis ES (1993) Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res 21:2383–2388

    CAS  PubMed  Google Scholar 

  • Finnegan EJ, Kovac KA (2000) Plant DNA methyltransferases. Plant Mol Biol 43:189–201

    CAS  PubMed  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 93:8449–8454

    PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  PubMed  Google Scholar 

  • Genger RK, Kovac KA, Dennis ES, Peacock WJ, Finnegan EJ (1999) Multiple DNA methyltransferase genes in Arabidopsis thaliana. Plant Mol Biol 41:269–278

    CAS  PubMed  Google Scholar 

  • Giordano M, Mattachini ME, Cella R, Pedrali-Noy G (1991) Purification and properties of a novel DNA methyltransferase from cultured rice cells. Biochem Biophys Res Commun 177:711–719

    CAS  PubMed  Google Scholar 

  • Hall TC, Kumpatla SP, Kharb P, Iyer L, Cervera M, Jiang Y, Wang T, Yang G, Teerawanichpan P, Narangajavana J, Dong J (2001) Gene silencing and its reactivation in transgenic rice. In: Khush GS, Brar DS, Hardy B (eds) Rice genetics. Science Publishers, New Delhi, pp 465–481

  • Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679

    Article  CAS  PubMed  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    CAS  PubMed  Google Scholar 

  • Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–6547

    CAS  PubMed  Google Scholar 

  • Henikoff S, Comai L (1998) A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics 149:307–318

    CAS  PubMed  Google Scholar 

  • Holen T, Amarzguioui M, Wiiger MT, Babaie E, Prydz H (2002) Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res 30:1757–1766

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Jiang CL, Jin SG, Lee DH, Lan ZJ, Xu X, O'Connor TR, Szabo PE, Mann JR, Cooney AJ, Pfeifer GP (2002) MBD3L1 and MBD3L2, two new proteins homologous to the methyl-CpG-binding proteins MBD2 and MBD3: characterization of MBD3L1 as a testis-specific transcriptional repressor. Genomics 80:621–629

    Article  CAS  PubMed  Google Scholar 

  • Jones L, Ratcliff F, Baulcombe DC (2001) RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr Biol 11:747–757

    Google Scholar 

  • Kumar S, Cheng X, Klimasauskas S, Mi S, Posfai J, Roberts RJ, Wilson GG (1994) The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 22:1–10

    CAS  PubMed  Google Scholar 

  • Kumpatla SP, Teng W, Buchholz WG, Hall TC (1997) Epigenetic transcriptional silencing and 5-azacytidine-mediated reactivation of a complex transgene in rice. Plant Physiol 115:361–373

    CAS  PubMed  Google Scholar 

  • Lauster R, Trautner TA, Noyer-Weidner M (1989) Cytosine-specific type II DNA methyltransferases. A conserved enzyme core with variable target-recognizing domains. J Mol Biol 206:305–312

    CAS  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    CAS  PubMed  Google Scholar 

  • Matzke MA, Aufsatz W, Kanno T, Mette MF, Matzke AJ (2002) Homology-dependent gene silencing and host defense in plants. Adv Genet 46:235–275

    CAS  PubMed  Google Scholar 

  • McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    CAS  PubMed  Google Scholar 

  • Morel JB, Mourrain P, Beclin C, Vaucheret H (2000) DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis. Curr Biol 10:1591–1594

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:431–497

    Google Scholar 

  • Nakano Y, Steward N, Sekine M, Kusano T, Sano H (2000) A tobacco NtMET1 cDNA encoding a DNA methyltransferase: molecular characterization and abnormal phenotypes of transgenic tobacco plants. Plant Cell Physiol 41:448–457

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Xie S, Li E (1998) Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res 26:2536–2540

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    CAS  PubMed  Google Scholar 

  • Papa CM, Springer NM, Muszynski MG, Meeley R, Kaeppler SM (2001) Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation. Plant Cell 13:1919–1928

    CAS  PubMed  Google Scholar 

  • Posfai J, Bhagwat AS, Posfai G, Roberts RJ (1989) Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res 17:2421–2435

    CAS  Google Scholar 

  • Pradhan S, Houlston C, Cummings M, Adams RL (1995) CG and CNG methyltransferases in plants. Gene 157:289–291

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Cummings M, Roberts RJ, Adams RL (1998) Isolation, characterization and baculovirus-mediated expression of the cDNA encoding cytosine DNA methyltransferase from Pisum sativum. Nucleic Acids Res 26:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Rakyan VK, Preis J, Morgan HD, Whitelaw E (2001) The marks, mechanisms and memory of epigenetic states in mammals. Biochem J 356:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ramchandani S, Bhattacharya SK, Cervoni N, Szyf M (1999) DNA methylation is a reversible biological signal. Proc Natl Acad Sci USA 96:6107–6112

    Article  CAS  PubMed  Google Scholar 

  • Robertson KD, Keyomarsi K, Gonzales FA, Velicescu M, Jones PA (2000) Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the G(0)/G(1) to S phase transition in normal and tumor cells. Nucleic Acids Res 28:2108–2113

    Article  CAS  PubMed  Google Scholar 

  • Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL (1996) Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273:654–657

    Google Scholar 

  • Sankpal UT, Rao DN (2002) Structure, function, and mechanism of HhaI DNA methyltransferases. Crit Rev Biochem Mol Biol 37:167–197

    CAS  PubMed  Google Scholar 

  • Scheid OM, Probst AV, Afsar K, Paszkowski J (2002) Two regulatory levels of transcriptional gene silencing in Arabidopsis. Proc Natl Acad Sci USA 99:13659–13662

    Article  CAS  PubMed  Google Scholar 

  • Schweizer P, Pokorny J, Schulze-Lefert P, Dudler R (2000) Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J 24:895–903

    Article  CAS  PubMed  Google Scholar 

  • Siroky J, Castiglione MR, Vyskot B (1998) DNA methylation patterns of Melandrium album chromosomes. Chromosome Res 6:441–446

    Article  CAS  PubMed  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    CAS  PubMed  Google Scholar 

  • Steward N, Kusano T, Sano H (2000) Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucleic Acids Res 28:3250–3259

    CAS  PubMed  Google Scholar 

  • Stoutjesdijk PA, Singh SP, Liu Q, Hurlstone CJ, Waterhouse PA, Green AG (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731

    Article  CAS  PubMed  Google Scholar 

  • Tabara H, Grishok A, Mello CC (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282:430–431

    Article  CAS  PubMed  Google Scholar 

  • Theiss G, Schleicher R, Schimpff-Weiland G, Follmann H (1987) DNA methylation in wheat. Purification and properties of DNA methyltransferase. Eur J Biochem 167:89–96

    CAS  PubMed  Google Scholar 

  • Vaucheret H, Fagard M (2001) Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet 17:29–35

    Article  CAS  PubMed  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    CAS  PubMed  Google Scholar 

  • Wolffe AP, Jones PL, Wade PA (1999) DNA demethylation. Proc Natl Acad Sci USA 96:5894–5896

    CAS  PubMed  Google Scholar 

  • Yang D, Lu H, Erickson JW (2000) Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr Biol 10:1191–1200

    CAS  PubMed  Google Scholar 

  • Zentella R, Yamauchi D, Ho TH (2002) Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells. Plant Cell 14:2289–22301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Texas Advanced Technology Program (010366-0092-1999) and NSF (MCB 0110477). M.B.C. was supported by NSF grant MCB 9974706. P.T. and J.N. were funded in part by The Royal Golden Jubilee Ph.D. Program (PHD/00075/2541), The Thailand Research Fund. We thank Guojun Yang, Xiangyu Shi, Lakshminarayan Iyer and Amaret Bhumiratana for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Hall.

Electronic Supplementary Material

Legends Supplemental Fig 1-4 (PDF 53 KB)

supp.zip

In order to view the Electronic Supplementary Material, please download the following zip-file. Four JPG files are provided.

supp.zip (3 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teerawanichpan, P., Chandrasekharan, M.B., Jiang, Y. et al. Characterization of two rice DNA methyltransferase genes and RNAi-mediated reactivation of a silenced transgene in rice callus. Planta 218, 337–349 (2004). https://doi.org/10.1007/s00425-003-1112-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1112-6

Keywords

Navigation