Allen NS, Bennett MN (1996) Electro-optical imaging of F-actin and endoplasmic reticulum in living and fixed plant cells. In: Malecki M, Roomans G (eds) Science of specimen preparation for microscopy and microanalysis, vol 10. SMI Press, AMF, Chicago, pp 177–187
Allen NS, Bennett MN, Cox DN, Shipley A, Ehrhardt DW, Long SR (1994) Effects of Nod factors on alfalfa root hair Ca++ and H+ currents on cytoskeleton behavior. In: Daniels MJ, Downie JA, Osbourn AE (eds) Advances in molecular genetics of plant-microbe interactions, vol 3. Kluwer, Dordrecht, pp 107–114
Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua NH, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632
PubMed
Google Scholar
Bibikova TN, Zhigilei A, Gilroy S (1997) Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta 203:495–505
CAS
PubMed
Google Scholar
Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17:657–665
Article
CAS
PubMed
Google Scholar
Cárdenas L, Vidali L, Domínguez J, Pérez H, Sánchez F, Hepler PK, Quinto C (1998) Rearrangement of actin microfilaments in plant root hairs responding to Rhizobium etli nodulation signals. Plant Physiol 116:871–877
PubMed
Google Scholar
Cárdenas L, Feijó JA, Kunkel JG, Sánchez F, Holdaway-Clarke T, Hepler PK, Quinto C (1999) Rhizobium Nod factors induce increases in intracellular free calcium and extracellular calcium influxes in bean root hairs. Plant J 19:347–352
Article
PubMed
Google Scholar
Catoira R, Galera C, de Billy F, Penmetsa VR, Juornet EP, Maillet F, Rosenberg C, Cook D, Gough C, Dénarié J (2000) Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell 12:1647–1665
CAS
PubMed
Google Scholar
Collings DA, Allen NS (2000) Cortical actin interacts with the plasma membrane and microtubules. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 145–164
Cormack RGH (1949) The development of root hairs in angiosperms. Bot Rev 15:583–612
Google Scholar
Cyr RJ (1991) Calcium calmodulin affects microtubule stability in lysed protoplasts. J Cell Sci 100:311–317
CAS
Google Scholar
Cyr RJ (1994) Microtubules in plant morphogenesis: role of the cortical array. Annu Rev Cell Biol 10:153–180
CAS
PubMed
Google Scholar
de Ruijter NCA, Rook MB, Bisseling T, Emons AMC (1998) Lipochitooligosaccharides re-initiate root hair tip growth in Vicia sativa with high calcium and spectrin like antigen at the tip. Plant J 13:341–350
Article
Google Scholar
de Ruijter NCA, Bisseling T, Emons AMC (1999) Rhizobium Nod factors induce an increase in sub-apical fine bundles of actin filaments in Vicia sativa root hairs within minutes. Mol Plant Microbe Interact 12:829–832
Google Scholar
Dénarié J, Debellé F, Promé JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535
PubMed
Google Scholar
Doonan JH, Cove DJ, Lloyd CW (1988) Microtubules and microfilaments in tip growth — evidence that microtubules impose polarity on protonemal growth in Physcomitrella patens. J Cell Sci 89:533–540
Google Scholar
Downie JA, Walker S (1999) Plant responses to Nodulation factors. Curr Opin Plant Biol 2:483–489
CAS
PubMed
Google Scholar
Ehrhardt DW, Atkinson EM, Long SR (1992) Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256:998–1000
CAS
PubMed
Google Scholar
Ehrhardt DW, Wais R, Long SR (1996) Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85:673–681
PubMed
Google Scholar
Emons AMC (1989) Helicoidal microfibril deposition in a tip-growing cell and microtubule alignment during tip morphogenesis — a dry-cleaving and freeze-substitution study. Can J Bot 67:2401–2408
Google Scholar
Emons AMC, Derksen J (1986) Microfibrils, microtubules and microfilaments of the trichoblast of Equisetum hyemale. Acta Bot Neerl 35:311–320
Google Scholar
Emons AMC, de Ruijter NCA (2000) Actin: a target for signal transduction in root hairs. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 373–390
Felle HH, Kondorosi E, Kondorosi A, Schultze M (1995) Nod signal induced plasma membrane potential changes in alfalfa root hairs are differentially sensitive to structural modifications of the lipochitooligosaccharides. Plant J 7:939–947
Article
CAS
Google Scholar
Felle HH, Kondorosi E, Kondorosi A, Schultze M (1996) Rapid alkalinization in alfalfa root hairs in response to rhizobial lipochitooligosaccharides signals. Plant J 10:295–301
Article
CAS
Google Scholar
Felle HH, Kondorosi E, Kondorosi A, Schultze M (1998) The role of ion fluxes in Nod factor signaling in Medicago sativa. Plant J 13:453–463
Article
Google Scholar
Felle HH, Kondorosi E, Kondorosi A, Schultze M (1999a) Nod factors modulate the concentration of cytosolic free calcium differently in growing and non-growing root hairs of Medicago sativa L. Planta 209:207–212
CAS
PubMed
Google Scholar
Felle HH, Kondorosi E, Kondorosi A, Schultze M (1999b) Elevation of the cytosolic free [Ca2+] is indispensable for the transduction of the Nod factor signal in alfalfa. Plant Physiol 121:273–280
Article
CAS
PubMed
Google Scholar
Fu Y, Wu G, Yang ZB (2001) Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol 152:1019–1032
CAS
PubMed
Google Scholar
Gehring CA, Irving HR, Kabbara AA, Parish RW, Boukli NM, Broughton WJ (1997) Rapid, plateau-like increases in intracellular calcium are associated with Nod factor induced root hair deformation. Mol Plant Microbe Interact 10:791–802
CAS
Google Scholar
Geitmann A, Emons AMC (2000) The cytoskeleton in plant and fungal cell tip growth. J Microsc 198:218–245
Article
CAS
Google Scholar
Gianì S, Campanoni P, Breviaro D (2002) A dual effect on protein synthesis and degradation modulates the tubulin level in rice cells treated with oryzalin. Planta 214:837–847
PubMed
Google Scholar
Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5:56–60
CAS
PubMed
Google Scholar
Gundersen GG, Cook TA (1999) Microtubules and signal transduction. Curr Opin Cell Biol 11:81–94
CAS
PubMed
Google Scholar
Heidstra R, Bisseling T (1996) Nod factor induced host responses and mechanisms of Nod factor perception. New Phytol 133:25–43
CAS
Google Scholar
Horvath B, Heidstra R, Lados M, Moerman M, Spaink HP, Prome JC, Van Kammen A, Bisseling T (1993) Lipo-oligosaccharides of Rhizobium induce infection-related early nodulin gene expression in pea root hairs. Plant J 4:727–733
Article
CAS
PubMed
Google Scholar
Igarashi H, Orii H, Mori H, Shimmen T, Sonobe S (2000) Isolation of a novel protein from tobacco BY-2 cells: possible involvement in the interaction between actin filaments and microtubules Plant Cell Physiol 41:920–931
Google Scholar
Journet EP, Pichon M, Dedieu A, De Billy F, Truchet G, Barker DG (1994) Rhizobium meliloti Nod factors elicit cell specific transcription of ENOD12 gene in transgenic alfalfa. Plant J 6:241–249
Article
CAS
PubMed
Google Scholar
Kadota A, Wada M (1992) The circular arrangement of cortical microtubules around the subapex of tip-growing fern protonemata is sensitive to cytochalasin B. Plant Cell Physiol 33:99–102
CAS
Google Scholar
Kropf DL, Bisgrove SR, Hable WE (1998) Cytoskeletal control of polar growth in plant cells. Curr Opin Plant Biol 10:117–122
CAS
Google Scholar
Kurkdjian AC (1995) Role of differentiation of root epidermal cells in Nod factor (from Rhizobium meliloti)-induced root hair depolarization of Medicago sativa. Plant Physiol 107:783–790
CAS
PubMed
Google Scholar
Lhuissier FGP, de Ruijter NCA, Sieberer BJ, Esseling JJ, Emons AMC (2001) Time course of cell biological events evoked in legume root hairs by Rhizobium Nod factors: state of the art. Ann Bot 87:289–302
Article
CAS
Google Scholar
Lloyd CW, Pearce KJ, Rawlins DJ, Ridge RW, Shaw PJ (1987) Endoplasmic microtubules connect the advancing nucleus to the tip of legume root hairs, but F-actin is involved in basipetal migration. Cell Motil Cytoskel 8:27–36
Google Scholar
Long SR (1996) Rhizobium symbiosis: Nod factors in perspective. Plant Cell 8:1885–1898
CAS
PubMed
Google Scholar
Meske V, Ruppert V, Hartmann E (1996) Structural basis for the red light induced repolarization of tip growth in caulonema cells of Ceratodon purpureus. Protoplasma 192:189–198
Google Scholar
Miller DD, de Ruijter NCA, Emons AMC (1997) From signal to form: aspects of the cytoskeleton plasma membrane continuum in root hair tips. J Exp Bot 48:1881–1896
Article
CAS
Google Scholar
Ridge RW (1992) A model of legume root hair growth and Rhizobium infection. Symbiosis 14:359–373
Google Scholar
Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57
CAS
PubMed
Google Scholar
Schwuchow J, Sack FD, Hartmann E (1990) Microtubule distribution in gravitropic protonemata of the moss Ceratodon. Protoplasma 159:60–69
CAS
PubMed
Google Scholar
Sieberer BJ, Timmers ACJ, Lhuissier FGP, Emons AMC (2002) Endoplasmic microtubules configure the subapical cytoplasm and are required for fast growth of Medicago truncatula root hairs. Plant Physiol 130:977–988
CAS
PubMed
Google Scholar
Staiger CJ (2000) Signaling to the actin cytoskeleton in plants. Annu Rev Plant Phys Plant Mol Biol 51:257–288
CAS
Google Scholar
Terasaka O, Niitsu T (1994) Differential roles of microtubules and actin-myosin cytoskeleton in the growth of Pinus pollen tubes. Sex Plant Reprod 7:264–272
Google Scholar
That TC, Rossier C-T, Barja F, Turian G, Roos UP (1988) Induction of multiple germ tubes in Neurospora crassa by anti-tubulin agents. Eur J Cell Biol 46:68–79
CAS
PubMed
Google Scholar
Thion L, Mazars C, Thuleau P, Graziana A, Rossignol M, Moreau M, Ranjeva R (1996) Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells. FEBS Lett 393:13–18
CAS
PubMed
Google Scholar
Thion L, Mazars C, Nacry P, Bouchez D, Moreau M, Ranjeva R, Thuleau P (1998) Plasma membrane depolarization-activated calcium channels, stimulated by microtubule depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and longer half life in ton2 mutant cells affected in the organization of cortical microtubules. Plant J 13:603–610
CAS
PubMed
Google Scholar
Timmers ACJ, Auriac M-C, de Billy F, Truchet G (1998) Nod factor internalization and microtubular cytoskeleton changes occur concomitantly during nodule differentiation in alfalfa. Development 125:339–349
CAS
PubMed
Google Scholar
Timmers ACJ, Auriac M-C, Truchet G (1999) Refined analysis of early symbiotic steps of the Rhizobium–Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126:3617–3628
CAS
PubMed
Google Scholar
Tominaga M, Morita K, Sonobe S, Yokota E, Shimmen T (1997) Microtubules regulate the organization of actin filaments at the cortical region in root hair cells of Hydrocharis. Protoplasma 199:83–92
CAS
Google Scholar
Truchet G, Roche P, Lerouge P, Vasse J, Camut S, de Billy F, Promé JC, Dénarié J (1991) Sulfated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351:670–673
CAS
Google Scholar
Van Brussel AAN, Bakhuizen R, Van Spronsen PC, Spaink HP, Tak T, Lugtenberg BJJ, Kijne JW (1992) Induction of pre-infection thread structures in the leguminous host plant by mitogenic lipooligosaccharides of Rhizobium. Science 257:70–72
Google Scholar
Wacker I, Quader H, Schnepf E (1988) Influence of the herbicide oryzalin on cytoskeleton and growth of Funaria hygrometrica protonemata. Protoplasma 142:55–67
Google Scholar
Wais RJ, Galera C, Oldroyd G, Catoira R, Penmetsa VR, Cook D, Gough C, Dénarié J, Long S (2000) Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proc Natl Acad Sci USA 97:13407–13412
CAS
PubMed
Google Scholar
Whitehead LF, Day DA, Hardham AR (1998) Cytoskeletal arrays in the cells of soybean root nodules: the role of actin microfilaments in the organization of symbiosomes. Protoplasma 203:194–205
Google Scholar