Skip to main content

Ecophysiological aspects of allelopathy

Abstract

Allelochemicals play an important role in explaining plant growth inhibition in interspecies interactions and in structuring the plant community. Five aspects of allelochemicals are discussed from an ecophysiological perspective: (i) biosynthesis, (ii) mode of release, (iii) mode of action, (iv) detoxification and prevention of autotoxicity, and (v) joint action of allelochemicals. A discussion on identifying a compound as an allelochemical is also presented.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

Abbreviations

DIBOA:

2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one

DIMBOA:

2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one

HPPD:

hydroxyphenylpyruvate dioxygenase

PSII:

photosystem II

References

  1. Alsaadawi IS, Al-Uqaili JK, Alrubeaa AJ, Al-Hadithy SM (1986) Allelopathic suppression of weeds and nitrification with selected cultivars of Sorghum bicolor (L.) Moench. J Chem Ecol 12:209–220

    Google Scholar 

  2. Balke NE, Davis MP, Lee CC (1987) Conjugation of allelochemicals by plants: enzymatic glucosylation of salicylic acid by Avena sativa. In: Waller GR (ed) Allelochemicals: role in agriculture and forestry. American Chemical Society, Washington DC, pp 214–227

  3. Battey NH, Blackbourn HD (1993) The control of exocytosis in plant cells. New Phytol 125:307–338

    CAS  Google Scholar 

  4. Baziramakenga R, Leroux GD, Simard RR, Nadeau P (1997) Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings. Can J Bot 75:445–450

    CAS  Google Scholar 

  5. Berenbaum MR (1995) Turnabout is fair play: secondary roles for primary compounds. J Chem Ecol 21:925–940

    CAS  Google Scholar 

  6. Bernays EA, Woodhead S (1982) Plant phenols utilized as nutrients by a phytophagus insect. Science 216:201–203

    CAS  Google Scholar 

  7. Bhowmik PC, Inderjit (2003) Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot 22:661–671

    Article  Google Scholar 

  8. Blum U (1995) The value of model plant–microbe–soil systems for understanding processes associated with allelopathic interactions: one example. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes and applications. American Chemical Society, Washington DC, pp 127-131

  9. Blum U (1996) Allelopathic interactions involving phenolic acids. J Nematol 28:259–267

    CAS  Google Scholar 

  10. Blum U (1999) Designing laboratory plant debris–soil bioassays: some reflections. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC, Boca Raton, pp 17–23

  11. Blum U, Dalton BR, Shann JR (1985) The effects of ferulic and p-coumaric acids in nutrient culture on cucumber leaf expansion as influenced by pH. J Chem Ecol 11:1567–1582

    CAS  Google Scholar 

  12. Blum U, Gerig TM, Worsham AD, King LD (1993) Modification of allelopathic effects of p-coumaric acid on morning-glory seedling biomass by glucose, methionine, and nitrate. J Chem Ecol 19:2791–2811

    CAS  Google Scholar 

  13. Blum U, Shafer SR, Lehman ME (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. experimental model. Crit Rev Plant Sci 18:673–693

    Article  CAS  Google Scholar 

  14. Booker FL, Blum U, Fiscus EL (1992) Short-term effects of ferulic acid on ion uptake and water relations in cucumber seedlings. J Exp Bot 43:649–655

    CAS  Google Scholar 

  15. Busk PK, Møller BL (2002) Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol 129:1222–1231

    Article  CAS  PubMed  Google Scholar 

  16. Camacho-Cristóbal JJ, Anzellotti D, González-Fontes A (2002) Changes in phenolic metabolism of tobacco plants during short-term boron deficiency. Plant Biol Biochem 40:997–1002

    Google Scholar 

  17. Cole JD (1994) Detoxification and activation of agrochemicals in plants. Pestic Sci 42:209–222

    CAS  Google Scholar 

  18. Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PS II inhibitor in Sorghum spp. root exudates. Weed Technol 15:813–825

    CAS  Google Scholar 

  19. Dalton BR (1999) The occurrence and behavior of plant phenolic acids in soil environment and their potential involvement in allelochemical interference interactions: methodological limitations in establishing conclusive proof of allelopathy. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC, Boca Raton, pp 57–74

  20. Dillon RJ, Vennard CT, Charnley AK (2000) Pheromones — exploitation of gut bacteria in the locust. Nature 403:851

    Article  CAS  Google Scholar 

  21. Duke SO, Paul RN (1993) Development and fine structure of the glandular trichomes of Artemisia annua L. Int J Plant Sci 154:107–118

    Article  Google Scholar 

  22. Duke SO, Williams RD, Markhart AH (1983) Interaction of moisture stress and three phenolic compounds on lettuce seed germination. Ann Bot 52:923–926

    CAS  Google Scholar 

  23. Duke SO, Vaughn KC, Croom EM, Elsohly HN (1987) Artemisinin, a constituent of annual wormwood (Artemisia annua), is a selective phytotoxin. Weed Sci 35:499–505

    CAS  Google Scholar 

  24. Duke MV, Paul RN, ElSohly HN, Sturtz G, Duke SO (1994) Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua. Int J Plant Sci 155:365–373

    Article  Google Scholar 

  25. Duke SO, Canel C, Rimando AM, Tellez MR, Duke MV, Paul RN (2000) Current and potential exploitation of plant glandular trichome productivity. Adv Bot Res 31:121–151

    CAS  Google Scholar 

  26. Einhellig FA (1989) Interactive effects of allelochemicals and environmental stress. In: Chou CH, Waller GR (eds) Phytochemical ecology: allelochemicals, mycotoxins, and insect pheromones and allomones. Academia Sinica Monograph Series No. 9, Taipei, ROC, pp 101–116

  27. Einhellig FA (1995) Allelopathy: current status and future goals. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes and applications. American Chemical Society, Washington DC, pp 1–24

  28. Einhellig FA, Rasmussen JA (1979) Effects of three phenolic acids on chlorophyll content and growth of soybean and grain sorghum seedlings. J Chem Ecol 5:815–823

    CAS  Google Scholar 

  29. Einhellig FA, Souza IF (1992) Phytotoxicity of sorgoleone found in grain sorghum root exudates. J Chem Ecol 18:1–11

    CAS  Google Scholar 

  30. Einhellig FA, Rice EL, Risser PG, Wender SH (1970) Effects of scopoletin on growth, CO2 exchange rates, and concentration of scopoletin, scopolin, and chlorogenic acid in tobacco, sunflower and pigweed. Bull Torrey Bot Club 97:22–23

    CAS  Google Scholar 

  31. Einhellig FA, Rasmussen JA, Hejl AH, Souza IF (1993) Effects of root exudate sorgoleone on photosynthesis. J Chem Ecol 19:369–375

    CAS  Google Scholar 

  32. Facchini PJ, Chappell J (1992) Gene family for an elicitor-induced sesquiterpene cyclase in tobacco. Proc Natl Acad Sci USA 89:11088–11092

    CAS  PubMed  Google Scholar 

  33. Friebe A (2001) Role of benzoxaninones in cereals. J Crop Prod 4:479–400

    Google Scholar 

  34. Galindo JCG, Hernandez A, Dayan FE, Macias FA, Duke SO (1999) Dehydrozaluzanin C, a natural sesquiterpenolide, causes rapid plasma membrane leakage. Phytochemistry 52:805–813

    Article  CAS  Google Scholar 

  35. Gerig TM, Blum U (1991) Effects of mixtures of four phenolic acids on leaf area expansion of cucumber seedlings grown in portsmouth B1 soil materials. J Chem Ecol 17:29–39

    CAS  Google Scholar 

  36. Gierl A, Frey M (2001) Evolution of benzoxazinone biosynthesis and indole production in maize. Planta 213:493–498

    Article  CAS  PubMed  Google Scholar 

  37. Gonzalez VM, Kazimir J, Nimbal C, Weston LA, Cheniae GM (1997) Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J Agric Food Chem 45:1415–1421

    Article  CAS  Google Scholar 

  38. Gross EM (1999) Allelopathy in benthis and littoral areas: case studies on allelochemicals from benthic cyanobacteria and submerged macrophytes. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC, Boca Raton, pp 179–199

  39. Hejl AM, Einhellig FA, Rasmussen JA (1993) Effects of juglone on growth, photosynthesis, and respiration. J Chem Ecol 19:559–568

    CAS  Google Scholar 

  40. Hoffland E, Van den Boogard R, Nelemans J, Findenegg G (1992) Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytol 122:675–680

    CAS  Google Scholar 

  41. Inderjit (1996) Plant phenolics in allelopathy. Bot Rev 62:182–202

    Google Scholar 

  42. Inderjit (2001) Soils: environmental effect on allelochemical activity. Agron J 93:79–84

    CAS  Google Scholar 

  43. Inderjit, Bhowmik PC (2002) Allelochemicals phytotoxicity in explaining weed invasiveness and their function as herbicide analogues. In: Inderjit, Mallik AU (eds) Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Birkhäuser, Basal, pp 187–197

  44. Inderjit, Dakshini KMM (1992) Interference potential of Pluchea lanceolata (Asteraceae): growth and physiological responses of asparagus bean, Vigna unguiculata var. sesquipedalis. Am J Bot 79:977–981

    Google Scholar 

  45. Inderjit, Keating KI (1999) Allelopathy: principles, procedures, processes, and promises for biological control. Adv Agron 67:141–231

    CAS  Google Scholar 

  46. Inderjit, Mallik AU (2002) Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Birkhäuser, Basal

    Google Scholar 

  47. Inderjit, Nilsen ET (2003) Bioassays and field studies for allelopathy in terrestrial plants: progress and problems. Crit Rev Plant Sci 22:221–238

    Google Scholar 

  48. Inderjit, Weiner J (2001) Plant allelochemical interference or soil chemical ecology? Persp Plant Ecol Evol Syst 4:3–12

    Google Scholar 

  49. Inderjit, Weston LA (2003) Root exudates: an overview. In: de Kroon H, Visser EJW (eds) Root ecology. Springer, Berlin Heidelberg New York, pp 235–255

  50. Inderjit, Dakshini KMM, Einhellig FA (1995) Allelopathy: organisms, processes, and applications. American Chemical Society, Washington DC

  51. Inderjit, Muramatsu M, Nishimura H (1997) On allelopathic potential of terpenoids, phenolics and their mixture, and their recovery in soil. Can J Bot 75:888–891

    Google Scholar 

  52. Inderjit, Dakshini KMM, Foy CL (1999a) Principles and practices in plant ecology: allelochemical interactions. CRC, Boca Raton

  53. Inderjit, Cheng HH, Nishimura H (1999b) Plant phenolics and terpenoids: transformation, degradation, and potential for allelopathic interactions. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC, Boca Raton, pp 255–266

  54. Inderjit, Streibig J, Olofsdotter M (2002) Joint action of phenolic acid mixtures and its significance in allelopathy research. Physiol Plant 114:422–428

    Article  CAS  PubMed  Google Scholar 

  55. Kato-Noguchi H, Mizutani J, Hasegawa K (1994) Allelopathy of oats. II. Allelochemical effect of l-tryptophan and its concentration in oat root exudates. J Chem Ecol 20:315–319

    CAS  Google Scholar 

  56. Kaur H, Inderjit, Keating KI (2002) Do allelochemicals operate independent of substratum factors? In: Inderjit, Mallik AU (eds) Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Birkhäuser, Basal, pp 99–107

  57. Kellogg EA (2001) Root hairs, trichomes and the evolution of genes. Trends Plant Sci 6:550–552

    Article  CAS  PubMed  Google Scholar 

  58. Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, Berlin Heidelberg New York

  59. Leu E, Krieger-Liszkay A, Goussias C, Gross EM (2002) Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiol 130:2011–2018

    Article  CAS  PubMed  Google Scholar 

  60. Li HH, Nishimura H, Hasegawa K, Mizutani J (1993) Some physiological effects and the possible mechanism of action of juglone in plants. Weed Res (Japan) 38:214–222

    Google Scholar 

  61. Lichtenthaler HK, Rohmer M, Schwender J (1997) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plant 101:643–652

    CAS  Google Scholar 

  62. Lois AF, West CA (1990) Regulation of expression of the casbene synthetase gene during elicitation of castor bean seedlings with pectic fragments. Arch Biochem Biophys 276:270–277

    CAS  PubMed  Google Scholar 

  63. Lydon J, Duke SO (1988) Glyphosate induction of elevated levels of hydroxybenzoic acids in higher plants. J Agric Food Chem 36:813–818

    CAS  Google Scholar 

  64. Lydon J, Duke SO (1993) The role of pesticides on host allelopathy and their effects on allelopathic compounds. In: Altman J (ed) Pesticide interactions in crop production: beneficial and deleterious effects. CRC, Boca Raton, pp 37–56

  65. Lydon J, Teasdale JR, Chen PK (1997) Allelopathic activity of annual wormwood (Artemisia annua) and the role of artemisinin. Weed Sci 45:807–811

    CAS  Google Scholar 

  66. Lyu SW, Blum U (1990) Effect of ferulic acid, an allelopathic compound, on net P, K, and water uptake in cucumber seedling in a split-root system. J Chem Ecol 16:2429–2439

    CAS  Google Scholar 

  67. Macias FA, Varela RM, Torres A, Molinillo JMG (1999) Potential of cultivar sunflowers (Helianthus annuus L.) as a source of natural herbicide templates. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC, Boca Raton, pp 531–550

  68. Mahall BE, Callaway RM (1992) Root communication mechanisms and intracommunity distributions of two Mojave desert shrubs. Ecology 73:2145–2151

    Google Scholar 

  69. McConkey ME, Gershenzon J, Croteau RB (2000) Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint. Plant Physiol 122:215–223

    Article  CAS  PubMed  Google Scholar 

  70. Meazza G., Scheffler BE, Tellez MR, Rimando AM, Romagni JG, Duke SO, Nanayakkara D, Khan IA, Abourashed EA, Dayan FE (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 60:281–288

    Article  CAS  PubMed  Google Scholar 

  71. Molísch H (1937) Der Einfluss einer Pflanze auf die andere-Allelopathie. Fischer, Jena

  72. Muller WH (1965) Volatile materials produced by Salvia leucophylla: effects on seedling growth and soil bacteria. Bot Gaz 126:195–200

    Article  CAS  Google Scholar 

  73. Nakano H, Nakajima E, Fujii Y, Yamada K, Shigemori H, Hasegawa K (2003) Leaching of the allelopathic substance, l-tryptophan from the foliage of mesquite (Prosopis juliflora (Sw.) DC.) plants by water spraying. Plant Growth Regul 40:49–52

    Article  CAS  Google Scholar 

  74. Netzly DH, Riopel JL, Ejeta G, Butler LG (1988) Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudate of sorghum (Sorghum bicolor). Weed Sci 36:441–446

    CAS  Google Scholar 

  75. Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130

    Article  CAS  Google Scholar 

  76. Neumann G, Römheld V (2001) The release of root exudates as affected by the plant's physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Dekker, New York, pp 41–93

  77. Niemeyer HM (1988) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the Gramineae. Phytochemistry 27:267–292

    Article  Google Scholar 

  78. Nimbal CI, Yerkes CN, Weston LA, Weller SC (1996a) Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J Agric Food Chem 44:1343–1347

    Article  CAS  Google Scholar 

  79. Nimbal CI, Yerkes CN, Weston LA, Weller SC (1996b) Herbicidal activity and site of action of the natural product sorgoleone. Pest Biochem Physiol 54:73–83

    Article  CAS  Google Scholar 

  80. Orcutt DM, Nilsen ET (2000) Physiology of plant under stress: soil and biotic factors. Wiley, New York

    Google Scholar 

  81. Pue KJ, Blum U, Gerig TM, Shafer SR (1995) Mechanism by which noninhibitory concentrations of glucose increase inhibitory activity of p-coumaric acid and on morning-glory seedling biomass accumulation. J Chem Ecol 21:833–847

    CAS  Google Scholar 

  82. Rasmussen JA, Hejl AM, Einhellig FA, Thomas JA (1992) Sorgoleone from root exudate inhibits mitochondrial functions. J Chem Ecol 18:197–207

    CAS  Google Scholar 

  83. Reese JC (1979) Interaction of allelochemicals with nutrients in herbivore food. In: Rosenthal GP, Janzen DH (eds) Herbivores: their interaction with secondary plant metabolites. Academic Press, New York, pp 309–330

  84. Reigosa MJ, Pedrol N (2002) Allelopathy: from molecules to ecosystems. Science Publishers, Enfield, NH

  85. Reigosa MJ, Sanchez-Moreiras A, González L (1999) Ecophysiological approach in allelopathy. Crit Rev Plant Sci 18:577–608

    Article  CAS  Google Scholar 

  86. Rice EL (1984) Allelopathy. Academic Press, Orlando, FL

  87. Rimando AM, Dayan FE, Czarnota MA, Weston LA, Duke SO (1998) A new photosystem II electron transport inhibitor from Sorghum bicolor. J Nat Prod 61:927–930

    Article  CAS  PubMed  Google Scholar 

  88. Romagni JG, Allen SN, Dayan FE (2000a) Allelopathic effects of volatile cineoles on two weedy plant species. J Chem Ecol 26:303–313

    Article  CAS  Google Scholar 

  89. Romagni JG, Duke SO, Dayan FE (2000b) Inhibition of plant asparagine synthetase by monoterpene cineoles. Plant Physiol 123:725–732

    Article  CAS  PubMed  Google Scholar 

  90. Sakaguchi T, Nishizawa NK, Nakanishi H, Yoshimura E, Mori S (1999) The role of potassium in the secretion of mugineic acids family phytosiderophores from iron-deficient barley roots. Plant Soil 215:221–227

    CAS  Google Scholar 

  91. Schiefelbein J (2000) Speciation of root hair cells. In: Ridge RW, Emons AMC (eds) Root hairs: cell and molecular biology. Springer, Berlin Heidelberg New York, pp 197–209

  92. Schulz M, Friebe A (1999) Detoxification of allelochemicals in higher plants and enzymes involved. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC, Boca Raton, pp 383–400

  93. Schulz M, Schnabl H, Manthe B, Schweihofen B, Casser I (1993) Uptake and detoxification of salicylic acid by Vicia faba and Fagopyrum esculentum. Phytochemistry 33:291–294

    Article  CAS  Google Scholar 

  94. Steele CL, Katoh S, Bohlmann J, Croteau R (1998) Regulation of oleoresinosis in grand fir (Abies grandis): differential transcriptional control of monoterpenes, sesquiterpenes, and diterpene synthase genes in response to wounding. Plant Physiol 116:1497–1504

    Article  CAS  PubMed  Google Scholar 

  95. Streibig JC (1992) Quantitative assessment of herbicide phytotoxicity with dilution assay. Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Copenhagen

  96. Streibig JC, Jensen JE (2000) Action of herbicides in mixtures. In: Cobb AH, Kirkwood RC (eds) Herbicides and their mechanism of action. Sheffield Academic Press, Sheffield, pp 153–180

  97. Streibig JC, Kudsk P, Jensen JE (1998) A general joint action model for herbicide mixtures. Pestic Sci 53:21–28

    Article  CAS  Google Scholar 

  98. Stiles LH, Leather GR, Chen PK (1994) Effects of two sesquiterpene lactones isolated from Artemisia annua on physiology of Lemna minor. J Chem Ecol 20:969–978

    CAS  Google Scholar 

  99. Tellez MR, Canel C, Rimando AM, Duke SO (1999) Differential accumulation of isoprenoids in glanded and glandless Artemisia annua L. Phytochemistry 52:1035–1040

    Article  CAS  Google Scholar 

  100. Uren NC (2001) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface. Dekker, New York, pp 19–40

  101. Vaughan D, Ord BG (1991) Excretion of potential allelochemicals and their effects on root morphology and nutrient contents. In: Atkinson D (ed) Plant root growth: an ecological perspective. Blackwell, Oxford, pp 399–421

  102. von Rad U, Huttl R, Lottspiech F, Gierl A, Frey M (2001) Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant J 28:633–42

    Article  PubMed  Google Scholar 

  103. Wardle DA, Nilsson MC, Gallet C, Zackrisson O (1998) An ecosystem level perspective of allelopathy. Biol Rev 73:305–319

    Article  Google Scholar 

  104. Watkinson A (1998) Reply from A.R. Watkinson. Trends Ecol Evol 13:407

    Article  Google Scholar 

  105. Weidenhamer JD, Macias FA, Fischer NH, Williamson GB (1993) Just how insoluble are monoterpenes? J Chem Ecol 19:1799–1807

    Google Scholar 

  106. Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35

    Google Scholar 

  107. Weston LA, Duke SO (2003) Weed and crop allelopathy. Crit Rev Plant Sci (in press)

  108. Weston LA, Harmon R, Mueller S (1989) Allelopathic potential of sorghum–sudangrass hybrid (Sudex). J Chem Ecol 15:1855–1865

    Google Scholar 

  109. Weston LA, Nimbal CI, Jeandet P (1999) Allelopathic potential of grain sorghum (Sorghum bicolour [L.] Moench) and related species. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC, Boca Raton, pp 467–477

  110. Whittaker RH, Feeny PP (1971) Allelochemics: chemical interactions among species. Science 171:757–770

    CAS  PubMed  Google Scholar 

  111. Willis RJ (1985) The historical basis of the concept of allelopathy. J Hist Biol 18:71–102

    Google Scholar 

  112. Wink M, Latz-Brüning B (1995) Allelopathic properties of alkaloids and other natural products: possible modes of action. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes and applications. American Chemical Society, Washington DC, pp 117–126

  113. Wu H, Haig T, Pratley J, Lemerle D, An M (2000) Distribution and exudation of allelochemicals in wheat, Triticum aestivum. J Chem Ecol 26:2141–2154

    Article  CAS  Google Scholar 

  114. Yang CF (1996) Action of allelochemicals on algal growth and photosystem II efficiency. MSc thesis, Southwest Missouri State University, Springfield, MO

  115. Yang X, Scheffler B, Weston LA (2001) Analysis of gene expression related to sorgoleone production using mRNA differential display. Proc WSSA 41:37

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank Drs. Frank Dayan, Agnes Rimando and two anonymous reviewers for making constructive comments on the manuscript. Inderjit would like to thank Dr. B. Hari Gopal of the Department of Science and Technology, India for his help and encouragement in various ways.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Inderjit.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Inderjit, ., Duke, S.O. Ecophysiological aspects of allelopathy. Planta 217, 529–539 (2003). https://doi.org/10.1007/s00425-003-1054-z

Download citation

Keywords

  • Allelochemical
  • Allelopathy
  • Autotoxicity
  • Detoxification
  • Joint action
  • Phytotoxin