Skip to main content
Log in

A 10-kDa class-CI sHsp protects E. coli from oxidative and high-temperature stress

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

We report on a new cDNA clone (Qshsp10.4-CI) of a Quercus suber L. class-CI small heat-shock protein (sHsp) obtained from cork (phellem), a highly oxidatively stressed plant tissue. The deduced gene product lacks the C-terminal extension and the consensus I region of the α-crystallin domain, being the most C-terminally truncated sHsp reported to date. In an attempt to prove that a protective function is possible for such a truncated sHsp, we overexpressed in Escherichia coli three recombinant sHsp-CIs, one (rQsHsp10.4-CI) showing the same truncation as Qshsp10.4-CI, a second (rN49) lacking the whole α-crystallin domain, and a third (rN153) consisting of a full-length sHsp-CI. The overexpression of rN153 and, remarkably, rQsHsp10.4-CI but not rN49 enhanced cell viability under high temperature and, interestingly, under oxidative stress. These results show that the C-terminal extension and the consensus I region of the α-crystallin domain are dispensable, but amino acids 1–41 of the α-crystallin domain (including the consensus II region) are essential for the protective activity of sHsp-CIs. On the other hand, two-dimensional immunodetection patterns showed accumulation of ca. 10-kDa sHsp-CI immunorelated polypeptides in cork and other oxidatively stressed tissues but not in control and heat-stressed tissues. We discuss the possible role of highly truncated sHsps in relation to oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–c.
Fig. 3.

Similar content being viewed by others

Abbreviations

2D:

two-dimensional

sHsp:

small heat-shock protein

sHsp-CI:

class-I sHsp

IPTG:

isopropyl β-d-thiogalactopyranoside

References

  • Beissinger M, Buchner J (1998) How chaperones fold proteins. Biol Chem 379:245–259

    CAS  PubMed  Google Scholar 

  • Collada C, Gómez L, Casado R, Aragoncillo C (1997) Purification and in vitro chaperone activity of a class I small heat shock protein abundant in recalcitrant chestnut seeds. Plant Physiol 115:71–77

    Article  CAS  PubMed  Google Scholar 

  • Crawford DR, Davies KJA (1994) Adaptive response and oxidative stress. Environ Health Persp [Suppl 10] 102:25–28

    Google Scholar 

  • Forreiter C, Kirschner M, Nover L (1997) Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo. Plant Cell 12:2171–2181

    Article  Google Scholar 

  • Horwitz J (2000) The function of alpha-crystallin in vision. Semin Cell Dev Biol 11:53–60

    Article  CAS  PubMed  Google Scholar 

  • Jinn TL, Wu SH, Yeh CH, Hsieh MH, Yeh YC, Chen YM, Lin CY (1993) Immunological kinship of class I low molecular weight heat shock proteins and thermostabilization of soluble proteins in vitro among plants. Plant Cell Physiol 34:1055–1062

    CAS  Google Scholar 

  • Joe MK, Park SM, Lee YS, Hwang DS, Hong CB (2000) High temperature stress resistance of Escherichia coli induced by a tobacco class I low molecular weight heat-shock protein. Mol Cells 10:519–524

    Article  CAS  PubMed  Google Scholar 

  • Kolattukudy PE, Podila GK, Roberts E, Dickman MD (1984) Gene expression resulting from early signals in plant–pathogen interaction. Can J Bot 62:2918–2933

    CAS  Google Scholar 

  • Kitagawa M, Matsumura Y, Tsuchido T (2000) Small heat shock proteins, IbpA and IbpB, are involved in resistances to heat and superoxide stresses in Escherichia coli. FEMS Microbiol Lett 184:165–171

    Article  CAS  PubMed  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–197

    PubMed  Google Scholar 

  • Lee GJ, Pokala N, Vierling E (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270:10432–10438

    PubMed  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    PubMed  Google Scholar 

  • Leroux MR, Ma BJ, Batelier G, Melki R, Candido EP (1997a) Unique structural features of a novel class of small heat shock proteins. J Biol Chem 272:12847–12853

    Article  CAS  PubMed  Google Scholar 

  • Leroux MR, Melki R, Gordon B, Batelier G, Candido EP (1997b) Structure–function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J Biol Chem 272:24646–24656

    Article  CAS  PubMed  Google Scholar 

  • Löw D, Brändle K, Nover L, Forreiter C (2000) Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta 211:575–582

    PubMed  Google Scholar 

  • MacRae TH (2000) Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas. Cell Mol Life Sci 57:899–913

    CAS  PubMed  Google Scholar 

  • Morange M, Favet N, Loones M-T, Manuel M, Mezger V, Michel E, Rallu M, Sage J (1998) Heat shock genes and development. In: P Csermely (ed) Stress of life: from molecules to man. Ann N Y Acad Sci 851:117–122

    CAS  PubMed  Google Scholar 

  • Pla M, Huguet G, Verdaguer D, Puigderrajols P, Llompart B, Nadal A, Molinas M. (1998) Stress proteins co-expressed in suberized and lignified cells and in apical meristems. Plant Sci 139:49–57

    Article  CAS  Google Scholar 

  • Pla M, Jofré A, Martell M, Molinas M, Gómez J (2000) Large accumulation of mRNA and DNA point modifications in a plant senescent tissue. FEBS Lett 472:14–16

    CAS  PubMed  Google Scholar 

  • Puigderrajols P, Jofré A, Mir G, Pla M, Verdaguer D, Huguet G, Molinas M (2002) Temporal and spatial distribution patterns of developmental and stress-induced small heat shock proteins in cork oak somatic embryos. J Exp Bot 53:1445–1452

    Article  CAS  PubMed  Google Scholar 

  • Rajaraman K, Raman B, Ramakrishna T, Rao CM (2001) Interaction of human recombinant alphaA- and alphaB-crystallins with early and late unfolding intermediates of citrate synthase on its thermal denaturation. FEBS Lett 497:118–23

    Article  CAS  PubMed  Google Scholar 

  • Scharf K-D, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat proteins containing α-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237

    CAS  PubMed  Google Scholar 

  • Smulders RHPH, Carver JA, Lindner RA, van Boekel MA, Bloemendal H, de Jong WW (1996) Immobilization of the C-terminal extension of bovine alphaA-crystallin reduces chaperone-like activity. J Biol Chem 271:29060–29066

    Article  CAS  PubMed  Google Scholar 

  • Soto A, Allona I, Collada C, Guevara M, Casado R, Rodriguez-Cerezo E, Aragoncillo C, Gómez L (1999) Heterologous expression of a plant small heat shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol 120:521–528

    CAS  PubMed  Google Scholar 

  • van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–30

    PubMed  Google Scholar 

  • Varadarajan GS, Prakash CS (1991) A rapid and efficient method for the extraction of total DNA from sweet potato and its related species. Plant Mol Biol Report 9:6–12

    CAS  Google Scholar 

  • Veinger L, Diamant S, Buchner J, Goloubinoff P (1998) The small heat-shock protein IbpB from E. coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273:11032–11037

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Spector (1996) A alpha-crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner. Eur J Biochem 242:56–66

    CAS  PubMed  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) The molecular evolution of smHSP in plants. J Exp Bot 47:325–338

    CAS  Google Scholar 

  • Wehmeyer N, Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol 122:1099–1108

    PubMed  Google Scholar 

  • Yeh CH, Chang PF, Yeh KW, Lin WC, Chen YM, Lin CY (1997) Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc Natl Acad Sci USA 94:10967–10972

    Article  CAS  PubMed  Google Scholar 

  • Yeh CH, Chen YM, Lin CY (2002) Functional regions of rice heat shock protein Oshsp16.9, required for conferring thermotolerance in Escherichia coli. Plant Physiology 128:661–668

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Spanish Ministerio de Ciencia y Tecnología (Ramon y Cajal and INIA CAL01-058-C2-2 project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Molinas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jofré, A., Molinas, M. & Pla, M. A 10-kDa class-CI sHsp protects E. coli from oxidative and high-temperature stress. Planta 217, 813–819 (2003). https://doi.org/10.1007/s00425-003-1048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1048-x

Keywords

Navigation