Skip to main content
Log in

In vitro biosynthesis of galactans by membrane-bound galactosyltransferase from radish (Raphanus sativus L.) seedlings

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

We investigated a galactosyltransferase (GalT) involved in the synthesis of the carbohydrate portion of arabinogalactan-proteins (AGPs), which consist of a β-(1→3)-galactan backbone from which consecutive (1→6)-linked β-Galp residues branch off. A membrane preparation from 6-day-old primary roots of radish (Raphanus sativus L.) transferred [14C]Gal from UDP-[14C]Gal onto a β-(1→3)-galactan exogenous acceptor. The reaction occurred maximally at pH 5.9–6.3 and 30 °C in the presence of 15 mM Mn2+ and 0.75% Triton X-100. The apparent K m and V max values for UDP-Gal were 0.41 mM and 1,000 pmol min−1 (mg protein)−1, respectively. The reaction with β-(1→3)-galactan showed a bi-phasic kinetic character with K m values of 0.43 and 2.8 mg ml−1. β-(1→3)-Galactooligomers were good acceptors and enzyme activity increased with increasing polymerization of Gal residues. In contrast, the enzyme was less efficient on β-(1→6)-oligomers. The transfer reaction for an AGP from radish mature roots was negligible but could be increased by prior enzymatic or chemical removal of α-l-arabinofuranose (α-l-Araf) residues or both α-l-Araf residues and (1→6)-linked β-Gal side chains. Digestion of radiolabeled products formed from β-(1→3)-galactan and the modified AGP with exo-β-(1→3)-galactanase released mainly radioactive β-(1→6)-galactobiose, indicating that the transfer of [14C]Gal occurred preferentially onto consecutive (1→3)-linked β-Gal chains through β-(1→6)-linkages, resulting in the formation of single branching points. The enzyme produced mainly a branched tetrasaccharide, Galβ(1→3)[Galβ(1→6)] Galβ(1→3)Gal, from β-(1→3)-galactotriose by incubation with UDP-Gal, confirming the preferential formation of the branching linkage. Localization of the GalT in the Golgi apparatus was revealed on a sucrose density gradient. The membrane preparation also incorporated [14C]Gal into β-(1→4)-galactan, indicating that the membranes contained different types of GalT isoform catalyzing the synthesis of different types of galactosidic linkage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d.
Fig. 2a–c.
Fig. 3a–c.
Fig. 4a, b.
Fig. 5.
Fig. 6a–c.

Similar content being viewed by others

Abbreviations

ABEE:

p-aminobenzoic acid ethyl ester

AGP:

arabinogalactan-protein

Araf :

arabinofuranose

DP:

degree of polymerization

GalT:

galactosyltransferase

GlcA:

glucuronic acid

GlcNAc:

N-acetylglucosamine

MALDI-TOF-MS:

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

4-O-methyl-GlcA:

4-O-methyl-glucuronic acid

PNP:

p-nitrophenyl

References

  • Albersheim P, Nevins DJ, English PD, Karr A (1967) A method for the analysis of sugars in plant cell-wall polysaccharides by gas liquid chromatography. Carbohydr Res 5:340–345

    CAS  Google Scholar 

  • Aspinall GO, Auret BJ, Hirst EL (1958a) Gum ghatti (Indian gum). Part Ⅲ. Neutral oligosaccharides found on partial acid hydrolysis of the gum. J Chem Soc 4408–4414

  • Aspinall GO, Hirst EL, Ramstad E (1958b) The constitution of larch ε-galactan. J Chem Soc 593–601

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brickell LS, Reid JSG (1996) Biosynthesis in vitro of pectic (1→4)-β-d-galactan. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Elsevier, Amsterdam, pp 127–134

  • Caspar Y, Johnson KL, McKenna JA, Bacic A, Schultz CJ (2001) The complex structures of arabinogalactan-proteins and the journey towards understanding function. Plant Mol Biol 47:161–176

    Article  PubMed  Google Scholar 

  • Clarke AE, Anderson RL, Stone BA (1979) Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry 18:521–540

    Article  CAS  Google Scholar 

  • Fincher GB, Stone BA, Clarke AE (1983) Arabinogalactan-proteins: structure, biosynthesis and function. Annu Rev Plant Physiol 34:47–70

    CAS  Google Scholar 

  • Geshi N, Jørgensen B, Scheller HV, Ulvskov P (2000) In vitro biosynthesis of 1,4-β-galactan attached to rhamnogalacturonan Ⅰ. Planta 210:622–629

    CAS  PubMed  Google Scholar 

  • Gibeaut DM, Carpita NC (1991) Tracing cell wall biogenesis in intact cells and plants. Selective turnover and alteration of soluble and cell wall polysaccharides in grasses. Plant Physiol 97:551–561

    CAS  Google Scholar 

  • Goubet F, Morvan C (1993) Evidence for several galactan synthases in flax (Linum usitatissimum L.) suspension-cultured cells. Plant Cell Physiol 34:1297–1303

    CAS  Google Scholar 

  • Goubet F, Morvan C (1994) Synthesis of cell wall galactans from flax (Linum usitatissimum L.) suspension-cultured cells. Plant Cell Physiol 35:719–727

    CAS  Google Scholar 

  • Goudsmit EM, Ketchum PA, Grossens MK, Blake DA (1989) Biosynthesis of galactogen: identification of a β-(1→6)-d-galactosyltransferase in Helix pomatia albumen glands. Biochim Biophys Acta 992:289–297

    CAS  PubMed  Google Scholar 

  • Hakomori S (1964) A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J Biochem 55:205–208

    CAS  Google Scholar 

  • Hashimoto Y (2000) Structure and biosynthesis of l-fucosylated arabinogalactan-proteins in cruciferous plants. In: Nothnagel EA et al. (eds) Cell and developmental biology of arabinogalactan-proteins. Kluwer/Plenum, New York, pp 51–60

  • Hayashi T, Maclachlan G (1984) Glycolipids and glycoproteins formed from UDP-galactose by pea membranes. Phytochemistry 23:487–492

    Article  CAS  Google Scholar 

  • Ishikawa M, Kuroyama H, Takeuchi Y, Tsumuraya Y (2000) Characterization of pectin methyltransferase from soybean hypocotyls. Planta 210:782–791

    Article  CAS  PubMed  Google Scholar 

  • Joziasse DH, Damen HCM, De Jong-Brink M, Edzes HT, Van den Eijnden DH (1987) Identification of UDP-Gal:β-galactoside β1→3-galactosyltransferase in the albumen gland of the snail Lymnaea stagnalis. FEBS Lett 221:139–144

    Article  CAS  PubMed  Google Scholar 

  • Kooiman P (1961) The constitution of Tamarindus-amyloid. Rec Trav Chim Pays-Bas 80:849–865

    Google Scholar 

  • Kováč P (1985) Systematic chemical synthesis of (1→6)-β-d-galacto-oligosaccharides and related compounds. Carbohydr Res 144:C12-C14

    Google Scholar 

  • Kováč P, Glaudemans CPJ, Taylor RB (1985) An efficient, unambiguous synthesis of methyl 3-O-β-d-galactopyranosyl-β-d-galactopyranoside. Further studies on the specificity of antigalactopyranan monoclonal antibodies. Carbohydr Res 142:158–164

    Article  PubMed  Google Scholar 

  • Kuroyama H, Tsumuraya Y (2001) A xylosyltransferase that synthesizes β-(1→4)-xylans in wheat (Triticum aestivum L.) seedlings. Planta 213:231–240

    CAS  PubMed  Google Scholar 

  • Mascara T, Fincher GB (1982) Biosynthesis of arabinogalactan-protein in Lolium multiflorum (ryegrass) endosperm cells. Ⅱ. In vitro incorporation of galactosyl residues from UDPgalactose into polymeric products. Aust J Plant Physiol 9:31–45

    CAS  Google Scholar 

  • Matsuura F, Imaoka A (1988) Chromatographic separation of asparagine-linked oligosaccharides labeled with an ultraviolet-absorbing compound, p-aminobenzoic acid ethyl ester. Glycoconj J 5:13–26

    CAS  Google Scholar 

  • McNab JM, Villemez CL, Albersheim P (1968) Biosynthesis of galactan by a particulate enzyme preparation from Phaseolus aureus seedlings. Biochem J 106:355–360

    CAS  PubMed  Google Scholar 

  • Misawa H, Tsumuraya Y, Kaneko Y, Hashimoto Y (1996) α-l-Fucosyltransferases from radish primary roots. Plant Physiol 110:665–673

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Takenishi S, Watanabe Y (1985) Purification and properties of two galactanases from Penicillium citrinum. Agric Biol Chem 49:3445–3454

    CAS  Google Scholar 

  • Nothnagel EA (1997) Proteoglycans and related components in plant cells. Int Rev Cytol 174:195–291

    CAS  PubMed  Google Scholar 

  • O'Neill M, Albersheim P, Darvill A (1990) The pectic polysaccharides of primary cell walls. In: Dey PM (ed) Methods in plant biochemistry, vol 2. Academic Press, London, pp 415–491

  • Panayotatos N, Villemez CL (1973) The formation of a β-(1→4)-d-galactan chain catalysed by a Phaseolus aureus enzyme. Biochem J 133:263–271

    CAS  PubMed  Google Scholar 

  • Peugnet I, Goubet F, Bruyant-Vannir MP, Thoiron B, Morvan C, Schols HA, Voragen AGJ (2001) Solubilization of rhamnogalacturonan I galactosyltransferases from membranes of a flax cell suspension. Planta 213:435–445

    CAS  PubMed  Google Scholar 

  • Ridley BL, O'Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    CAS  PubMed  Google Scholar 

  • Roy A, Manjula BN, Glaudemans CPJ (1981) The interaction of two polysaccharides containing β1,6-linked galactopyranosyl residues with two monoclonal antigalactan immunoglobulin Fab′ fragments. Mol Immunol 18:79–84

    Article  CAS  PubMed  Google Scholar 

  • Schibeci A, Pnjak A, Fincher GB (1984) Biosynthesis of arabinogalactan-protein in Lolium multiflorum (Italian ryegrass) endosperm cells. Subcellular distribution of galactosyltransferases. Biochem J 218:633–636

    CAS  PubMed  Google Scholar 

  • Sekimata M, Ogura K, Tsumuraya Y, Hashimoto Y, Yamamoto S (1989) A β-galactosidase from radish (Raphanus sativus L.) seedlings. Plant Physiol 90:567–574

    CAS  Google Scholar 

  • Stangier K, Lüttge H, Thiem JE, Bretting H (1995) Biosynthesis of the storage polysaccharide from the snail Biomphalaria glabrata, identification and specificity of a branching β1→6 galactosyltransferase. J Comp Physiol B 165:278–290

    CAS  PubMed  Google Scholar 

  • Takeuchi Y, Komamine A (1980) Turnover of cell wall polysaccharides of a Vinca rosea suspension culture. Ⅲ. Turnover of arabinogalactan. Physiol Plant 50:113–118

    CAS  Google Scholar 

  • Tsumuraya Y, Hashimoto Y, Yamamoto S, Shibuya N (1984) Structure of l-arabino-d-galactan-containing glycoproteins from radish leaves. Carbohydr Res 134:215–228

    Article  CAS  Google Scholar 

  • Tsumuraya Y, Hashimoto Y, Yamamoto S (1987) An l-arabino-d-galactan and an l-arabino-d-galactan-containing proteoglycan from radish (Raphanus sativus) seeds. Carbohydr Res 161:113–126

    Article  CAS  Google Scholar 

  • Tsumuraya Y, Mochizuki N, Hashimoto Y, Kováč P (1990) Purification of an exo-β-(1→3)-d-galactanase of Irpex lacteus (Polyporus tulipiferae) and its action on arabinogalactan-proteins. J Biol Chem 265:7207–7215

    CAS  PubMed  Google Scholar 

  • Tsumuraya Y, Ogura K, Hashimoto Y, Mukoyama H, Yamamoto S (1988) Arabinogalactan-proteins from primary and mature roots of radish (Raphanus sativus L.) Plant Physiol 86:155–160

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Tsumuraya.

Additional information

Sugars described in this paper belong to the d-series unless otherwise noted

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, H., Takeuchi, Y., Tsumuraya, Y. et al. In vitro biosynthesis of galactans by membrane-bound galactosyltransferase from radish (Raphanus sativus L.) seedlings. Planta 217, 271–282 (2003). https://doi.org/10.1007/s00425-003-0978-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-0978-7

Keywords

Navigation