Skip to main content

Advertisement

Log in

MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Magainin is one of the earliest reported antimicrobial peptides isolated from skin secretions of the African clawed frog Xenopus laevis. A synthetic substitution analogue of magainin, MSI-99, is employed in this study to impart disease resistance in transgenic tobacco ( Nicotiana tabacum L.) and banana [( Musa spp. cv. Rasthali (AAB)]. This peptide inhibited the growth and spore germination of Fusarium oxysporum f.sp. cubense at 16 µg/ml. MSI-99 has been subcloned into plant expression vectors pMSI164 and pMSI168, targeting the peptide into the cytoplasm and extracellular spaces, respectively. Tobacco plants transformed with pMSI168 showed enhanced resistance against Sclerotinia sclerotiorum, Alternaria alternata and Botrytis cinerea. Transgenic banana pants were obtained for both pMSI164 and pMSI168 transformations and showed resistance to F. oxysporum f.sp. cubense and Mycosphaerella musicola. The transgenic nature of the transformants and expression of this peptide was confirmed through polymerase chain reaction (PCR) and reverse transcription (RT)–PCR. The results suggest that MSI-99 can be useful in imparting enhanced disease resistance in transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5A–C.
Fig. 6.
Fig. 7A–E.
Fig. 8A–C.
Fig. 9A–D.

Similar content being viewed by others

Abbreviations

MIC:

minimum inhibitory concentration

RT–PCR:

reverse transcription–polymerase chain reaction

References

  • Bevins CL, Zasloff M (1990) Peptides from frog skin. Annu Rev Biochem 59:395–414

    Article  CAS  PubMed  Google Scholar 

  • Biggin P, Samson P (1999) Interaction of α-helices with lipid bilayer: a review of simulation studies. Biophys Chem 76:161–183

    Article  CAS  PubMed  Google Scholar 

  • Boman HG (1991) Antibacterial peptides: key components needed in immunity. Cell 65:205–207

    CAS  PubMed  Google Scholar 

  • Boman HG, Hultmark D (1987) Cell-free immunity in insects. Annu Rev Microbial 41:103–126

    Article  CAS  Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108:1353–1358

    CAS  PubMed  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95:6531–6536

    CAS  PubMed  Google Scholar 

  • Cary JW, Rajasekaran K, Jaynes JM, Cleveland TE (2000) Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci 154:171–181

    Article  CAS  PubMed  Google Scholar 

  • Cruciani RA, Barker JL, Zasloff M, Chen HC, Colamonici O (1991) Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci USA 88:3792–3796

    CAS  PubMed  Google Scholar 

  • DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862

    Article  CAS  PubMed  Google Scholar 

  • Dower WJ, Miller JF and Ragsdale CW (1988). High efficiency transformation of E.coli by high voltage electroporation. Nucleic Acids Res. 16: 6127–6147

    Google Scholar 

  • Ganapathi TR, Higgs NS, Balint-Kurti PJ, Arntzen CJ, May GD, Van Eck JM (2001) Agrobacterium -mediated transformation of the embryogenic cell suspensions of the banana cultivar Rasthali (AAB). Plant Cell Rep 20:157–162

    CAS  Google Scholar 

  • Ganapathi TR, Chakrabarti A, Suprasanna P, Bapat VA (2002) Genetic transformation in banana. In: Jaiwal PK, Singh RP (eds) Plant genetic engineering, vol 6. Sci-Tech Pub. Co., Houston, USA, pp 83–109

  • Ganz T, Lehrer RI (1994) Defensins. Curr Opin Immunol 6:584–589

    CAS  PubMed  Google Scholar 

  • Gao A, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CMT (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotech 18:1307–1310

    CAS  PubMed  Google Scholar 

  • Hancock REW, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88

    Article  CAS  PubMed  Google Scholar 

  • Hightower R, Baden C, Penzes E, Dunsmuir D (1994) The expression of cecropin in transgenic tobacco does not confer resistance to Pseudomonas syringae pv. tabaci. Plant Cell Rep 13:295–299

    CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekama A (1993) New Agrobacterium helper plasmid for gene transfer to plant cells. Transgenic Res 2:208–218

    CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    CAS  Google Scholar 

  • Huang HW (2000) Action of antimicrobial peptides: two state model. Biochemistry 39:8347–8352

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Nordeen RO, Di M, Owens LD, McBeth JH (1997) Expression of an engineered cecropin gene cassette in transgenic tobacco plants confers disease resistance to Pseudomonas syringae pv. tabaci. Phytopathology 87:494–499

    CAS  Google Scholar 

  • Hultmark D, Engstrom A, Bennich H, Kapur R, Boman HG (1982) Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biotech 127:207–217

    CAS  Google Scholar 

  • Jacob L, Zasloff M (1994) Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. Ciba Found Symp 186:197–216

    CAS  PubMed  Google Scholar 

  • Jaynes JM, Nagpala P, Destefano-Beltran L, Huang JH, Kin J, Denny T, Cetiner S (1993) Expression of a cecropin B lytic peptide analogue in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum Plant Sci 89:43–53

    Google Scholar 

  • Johnsgard GA (1957) An exploratory study of soils in relation to panama disease. United Fruit Co Research Dept Report and Dept of Agronomy, Cornell University, Ithaca

  • Keller H, Pamboukdjian N, Ponchet M, Poupet A, Delon R, Verrier JL, Roby D, Ricei P (1999) Pathogen induced elicitin production in transgenic tobacco generates a hypersensitive response and non-specific disease resistance. Plant Cell 11:223–235

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Lawrence CB, Xing HY, Babbitt RA, Bass WT, Maiti IB, Everett NP (2001) Enhanced disease resistance conferred by expression of an antimicrobial magainin analogue in transgenic tobacco. Planta 212:635–639

    Article  CAS  PubMed  Google Scholar 

  • Lorito M, Woo SL, Garcia I, Colucei G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F, Fernandez IG (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865

    CAS  PubMed  Google Scholar 

  • Matsuzaki K (1998) Magainins as paradiagram for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376:391–400

    CAS  PubMed  Google Scholar 

  • May GD, Afza R, Mason HS, Wiecko A, Novak FJ, Arntzen CJ (1995) Generation of transgenic banana ( Musa accuminata) plants via Agrobacterium mediated transformation. Bio/Technology 13:486–492

    CAS  Google Scholar 

  • Mourgues F, Brisset MN, Chevreau E (1998) Strategies to improve plant resistance to bacterial diseases through genetic engineering. Trends Biotechnol 16:203–210

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Ohsaki Y, Gazdar AF, Chen HC, Johnson BE (1992) Antitumour activity of magainin analogues against human lung cancer cell lines. Cancer Res 52:3354–3538

    Google Scholar 

  • Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Mitra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166

    Google Scholar 

  • Orjeda G, Moore NY (2001) IMTP phase II final results: response to fusarium and stability of genotypes across environments In: Molina AB, Nik Masdek NH, Liew KW (eds) Banana fusarium wilt management: towards sustainable cultivation. Proceedings of the international workshop on the banana fusarium wilt disease, INIBAP, Montpellier, France, pp 164–173

    Google Scholar 

  • Ploetz RC (1993) Fusarium wilt (Panama disease). In: Ganry J (ed) Breeding banana and plantain for resistance to diseases and pests. CIRAD: in collaboration with INIBAP, Montpellier, France, pp 149–158

  • Sagi L (2000) Genetic engineering of banana for disease resistance — future possibilities. In: Jones DR (ed) Diseases of banana, Abaca and Enset. CABI, Wallingford, UK, pp 465–515

  • Sagi L, Remi S, Panis B, Swennen R, Volckert G (1994) Transient gene expression in electroporated banana ( Musa spp. cv. Bluggoe, ABB group) protoplast isolated from regenerable embryogenic cell suspensions. Plant Cell Rep 13:262–266

    CAS  Google Scholar 

  • Sagi L, Panis B, Remy S, Schoofs H, De Smet K, Swennen R, Bruno PAC (1995) Genetic transformation of banana and plantain ( Musa spp.) via particle bombardment. Bio/Technology 13:481–485

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

  • Singhal V (1999) Bananas. In: Indian agriculture 1999. Indian Economic Data Research Centre, New Delhi, pp 150–152

  • Strittmatter G, Janssens J, Opsom C, Botterman J (1995) Inhibition of fungal disease development in plants by engineering controlled cell death. Bio/Technology 13:1085–1089

    CAS  Google Scholar 

  • Stewart CN Jr, Via LE (1993) A rapid CTAB DNA isolation technique for RAPD fingerprint and other PCR applications. Biotechniques 14:748–750

    CAS  PubMed  Google Scholar 

  • Stover RH (1962) Fusarium wilt (Panama disease) of banana and other Musa species. Phytopathol No 4, Commonwealth Mycological Institute, Kew, UK

  • Stover RH (1990) Fusarium wilt of banana: some history and current status of the disease. In: Ploetz RC (ed) Fusarium wilt of banana. APS Press, St Paul, Minn, pp 1–7

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic α-helical antimicrobial peptides. Biopolymers 55:4–30

    Article  CAS  PubMed  Google Scholar 

  • Valmayor RV (1991) Summary of discussions and recommendations of the INIBAP Brisbane Conference. In: Valmayor RV, Umali BE, Bejosano CP (eds) Banana diseases in Asia and the Pacific. Proceedings of a technical meeting on diseases effecting banana and plantain in Asia and the Pacific, Brisbane, Australia. INIBAP, Montpellier, France, pp 1–4

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterisation of two active forms and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. John Sanford, Sanford Scientific Inc., Waterloo, N.Y., USA, for providing the MSI-99 peptide and the synthetic gene constructs (pSAN164 and pSAN168). We also thank Mr. H. Bhuvanendra Kumar (Department of Applied Botany, University of Mysore) for help in screening transgenic banana plants against fusarium wilt, and our colleague, Dr. P. Suprasanna for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bapat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, A., Ganapathi, T.R., Mukherjee, P.K. et al. MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216, 587–596 (2003). https://doi.org/10.1007/s00425-002-0918-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-002-0918-y

Keywords

Navigation