Skip to main content
Log in

Inositol 1,4,5-trisphosphate-induced Ca2+ release is regulated by cytosolic Ca2+ in intact skeletal muscle

  • Original Article
  • Neurophysiology, Muscle and Sensory Organs
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Microinjection of inositol 1,4,5-trisphosphate (InsP 3 into intact skeletal muscle fibers isolated from frogs (Rana temporaria) increased resting cytosolic Ca2+ concentration ([Ca2+]i) as measured by double-barreled Ca2+-selective microelectrodes. In contrast, microinjection of inositol 1-phosphate, inositol 1,4-biphosphate, and inositol 1,4,5,6-tetrakisphosphate did not induce changes in [Ca2+]i. Incubation in low-Ca2+ solution, or in the presence of L-type Ca2+ channel blockers did not affect InsP 3Vinduced release of cytosolic Ca2+. Neither ruthenium red, a blocker of ryanodine receptor Ca2+-release channels, nor cytosolic Mg2+, a known inhibitor of the Ca2+-induced Ca2+-release process, modified the InsP 3induced release of cytosolic Ca2+. However, heparin, a blocker of InsP 3 receptors, inhibited InsP 3-induced release of cytosolic Ca2+. Also, pretreatment with dantrolene or azumulene, two inhibitors of cytosolic Ca2+ release, reduced [Ca2+]i, and prevented InsP 3 from inducing release of cytosolic Ca2+. Incubation in caffeine or lengthening of the muscle increased [Ca2+]i and enhanced the ability of InsP 3 to induce release of cytosolic Ca2+. These results indicate that InsP 3, at physiological concentrations, induces Ca2+ release in intact muscle fibers, and suggest that the InsP 3-induced Ca2+ release is regulated by [Ca2+]i. A Ca2+-dependent effect of InsP 3 on cytosolic Ca2+ release could be of importance under physiological or pathophysiological conditions associated with alterations in cytosolic Ca2+ homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alamo L, Lopez JR, Caputo C (1985) The increase in muscle metabolic rate associated with stretching in skeletal muscle might be related to an increment in free [Ca2+]i. Biophys J 47: 378a

    Google Scholar 

  2. Allen P, López JR, Sanchez V, Ryan JF, Sreter FA (1992) EU-4093 decreases cytosolic [Ca2+] in skeletal muscle from control and malignant hyperthermia-susceptible swine. Anesthesiology 76:132–138

    Article  PubMed  CAS  Google Scholar 

  3. Alvarez Leffmans FJ, Gamino SM, Giraldez F, Gonzalez-Serratos H (1986) Cytosolic free magnesium in frog skeletal muscle fibres measured with ion selective microelectrodes. J Physiol (Lond) 378:461–483

    Google Scholar 

  4. Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  5. Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signaling. Nature 341:197–205

    Article  PubMed  CAS  Google Scholar 

  6. Bootman MD, Missiaen L, Parys JB, De Smedt H, Casteels R (1995) Control of inositol 1,4,5-trisphosphate-induced Ca2+ release by cytosolic Ca2+. Biochem J 306:445–451

    PubMed  CAS  Google Scholar 

  7. Cleworth NF, Edman KA (1972) Changes in sarcomere length during isometric tension development in frog skeletal muscle. J Physiol (Lond) 227:1–17

    CAS  Google Scholar 

  8. Combettes L, Champeil P (1994) Calcium and inositol 1,4,5-trisphosphate-induced Ca2+ release. Science 265: 813–815

    Article  PubMed  CAS  Google Scholar 

  9. Combettes L, Hannaert-Merah Z, Coquil JF, Rosseau C, Claret M, Swillens S, Champeil P (1994) Rapid filtration studies of the effect of cytosolic Ca2+ on inositol 1,4,5-trisphosphate-induced 45Ca2+ release from cerebellar microsomes. J Biol Chem 269:17561–17571

    PubMed  CAS  Google Scholar 

  10. Ehrlich BE, Watras J (1988) Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature 336:583–586

    Article  PubMed  CAS  Google Scholar 

  11. Endo M (1975) Conditions required for calcium-induced release of calcium from the sarcoplasmic reticulum. Proc Jpn Acad 51:479–484

    CAS  Google Scholar 

  12. Finch EA, Turner TJ, Goldin SM (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252:443–446

    Article  PubMed  CAS  Google Scholar 

  13. Ford LE, Podolsky RJ (1972) Cytosolic calcium movement in skinned muscle fibres. J Physiol (Lond) 223:21–33

    CAS  Google Scholar 

  14. Foster PS, Genisi E, Claudianos C, Hopkinson K, Denborough M (1989) Inositol 1,4,5-trisphosphate phosphatase deficiency and malignant hyperthermia in swine Lancet 2:124–127

    Article  PubMed  CAS  Google Scholar 

  15. Hannon JD, Lee N, Yandong C, Blinks J (1992) Inositol trisphosphate (InsP 3) causes contraction in skeletal muscle only under artificial conditions: evidence that Ca2+ release can result from depolarization of T-tubules. J Muscle Res Cell Motil 13:447–456

    Article  PubMed  CAS  Google Scholar 

  16. Hidalgo C, Jaimovich E (1989) Inositol trisphosphate and excitation contraction coupling in skeletal muscle. J Bioenerg Biomembr 21:267–281

    Article  PubMed  CAS  Google Scholar 

  17. Jean T, Klee CB (1986) Calcium modulation of inositol 1,4,5 trisphosphate-induced calcium release from neuroblastoma × glioma hybrid (NG 108-15) microsomes. J Biol Chem 261:16414–16420

    PubMed  CAS  Google Scholar 

  18. Joseph SK, Rice HL (1989) The relation between inositol trisphosphate receptor density and calcium release in brain microsomes. Mol Pharmacol 35:355–359

    PubMed  CAS  Google Scholar 

  19. Jovanovic A, López JR, Terzic A (1996) Cytosolic Ca2+ domain-dependent protective action of adenosine in cardiomyocytes. Eur J Pharmacol 298:63–69

    Article  PubMed  CAS  Google Scholar 

  20. Lea TJ, Griffiths PJ, Treager RT, Ashley CC (1986) An examination of the ability of inositol 1,4,5-trisphosphate to induce calcium release and tension development in skinned skeletal muscle fibers of frog and Crustacea. FEBS Lett 203:153–161

    Article  Google Scholar 

  21. Lino M, Endo M (1992) Calcium-dependent immediate feedback control of inositol 1,4,5-trisphosphate-induced Ca2+ release. Nature 360:76–78

    Article  Google Scholar 

  22. López JR, Parra L (1991) Inositol 1,4,5-trisphosphate increases myoplasmic [Ca2+]i in isolated muscle fibers. Depolarization enhances its effects. Cell Calcium 12:543–557

    Article  PubMed  Google Scholar 

  23. López JR, Wanek L, Taylor S (1981) Skeletal muscle: length-dependent effects of potentiating agents. Science 214:79–82

    Article  PubMed  Google Scholar 

  24. López JR, Allen P, Alamo L, Jone D, Sreter F (1988) Myoplasmic free [Ca2+] during a malignant hyperthermia episode in swine. Muscle Nerve 11:22–88

    Google Scholar 

  25. López JR, Gerardi A, López M, Allen P (1991) Effect of dantrolene on myoplasmic free [Ca2+] measured in vivo in patients susceptible to malignant hyperthermia. Anesthesiology 76:711–719

    Article  Google Scholar 

  26. López JR, Pérez C, Alfonzo M, Cordovez G, Linares N, Allen P (1993) Changes in cytosolic Ca2+ concentration induced by inositol 1,4,5-trisphosphate in human malignant hyperthermia skeletal muscle. Life Sci 12:131–140

    Google Scholar 

  27. López JR, Jovanovic A, Terzic A (1995) Spontaneous calcium waves without contraction in cardiac myocytes. Biochem Biophys Res Commun 214:781–787

    Article  PubMed  Google Scholar 

  28. López JR, Rojas B, Gonzalez M, Terzic A (1995) Myoplasmic Ca2+ concentration during exertional rhabdomyolysis. Lancet 345:424–425

    Article  PubMed  Google Scholar 

  29. López JR, Linares N, Cordovez G, Terzic A (1995) Elevated myoplasmic calcium in exercise induced equine rhabdomyolysis. Pflügers Arch 430:293–295

    Article  PubMed  Google Scholar 

  30. López JR, Pérez C, Linares N, Allen P, Terzic A (1995) Hypersensitive response of malignant hyperthermia-susceptible skeletal muscle to inositol 1,4,5-trisphosphate induced release of calcium. Naunyn Schmiedebergs Arch Pharmacol 352: 442–446

    Article  PubMed  Google Scholar 

  31. Meissner G (1986) Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem 261:6300–6306

    PubMed  CAS  Google Scholar 

  32. Meyer T, Stryer L (1990) Transient calcium release induced by successive increments of inositol 1,4,5-trisphosphate. Proc Natl Acad Sci USA 87:3841–3845

    Article  PubMed  CAS  Google Scholar 

  33. Miyamoto H, Racker E (1982) Mechanism of calcium release from skeletal muscle sarcoplasmic reticulum. J Memb Biol 66:193–201

    Article  CAS  Google Scholar 

  34. Palade P, Dettbarn C, Alderson B, Volpe P (1989) Pharmacologic differentiation between inositol 1,4,5-trisphosphate-induced Ca2+ release and Ca2+ or caffeine-induced Ca2+ release from cytosolic membrane systems. Mol Pharmacol 36:673–680

    PubMed  CAS  Google Scholar 

  35. Pape PC, Konishi M, Baylor S, Somlyo AP (1988) Excitation-contraction coupling in skeletal muscle fibers injected with the InsP 3 blocker heparin. FEBS Lett 253:57–62

    Article  Google Scholar 

  36. Rojas C, Jaimovich E (1990) Calcium release modulated by inositol trisphosphate in ruptured fibers from frog skeletal muscle. Pflügers Archiv 416:296–304

    Article  PubMed  CAS  Google Scholar 

  37. Schneider MF, Chandler WK (1973) Voltage dependent charge movement in skeletal muscle: a possible step in excitation contraction coupling. Nature 242:244–246

    Article  PubMed  CAS  Google Scholar 

  38. Somlyo AP, Walker JW, Goldman YE, Trentham DR, Kobayashi S, Kitazawa T, Somlyo AV (1988) Inositol trisphosphate, calcium and muscle contraction. Philos Trans R Soc Lond Biol 320:399–414

    Article  PubMed  CAS  Google Scholar 

  39. Suárez Isla B, Alcayaga C, Marengo JJ, Bull R (1991) Activation of inositol trisphosphate-sensitive Ca2+ channels of sarcoplasmic reticulum from frog skeletal muscle. J Physiol (Lond) 441:575–591

    Google Scholar 

  40. Valdivia C, Vaughan D, Potter BV, Coronado R (1992) Fast release of 45Ca2+ induced by inositol 1,4,5-trisphosphate and Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle: evidence for two types of Ca2+ release channels. Biophys J 61:1184–1193

    Article  PubMed  CAS  Google Scholar 

  41. Vergara J, Tsien R, Delay M (1985) Inositol 1,4,5-trisphosphate. A possible chemical link in excitation-contraction coupling in muscle. Proc Natl Acad Sci USA 82:6352–6356

    Article  PubMed  CAS  Google Scholar 

  42. Vilven J, Coronado R (1988) Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate. Nature 336:587–589.

    Article  PubMed  CAS  Google Scholar 

  43. Volpe P, Salviati G, De Virgillo F, Pozzan T (1985) Inositol 1,4,5 trisphosphate induced calcium release from sarcoplasmic reticulum. Nature 316:347–349

    Article  PubMed  CAS  Google Scholar 

  44. Walker JW, Somlyo AV, Goldman YE, Somlyo AP, Trenham DR (1987) Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate. Nature 327:249–252

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, J.R., Terzic, A. Inositol 1,4,5-trisphosphate-induced Ca2+ release is regulated by cytosolic Ca2+ in intact skeletal muscle. Pflügers Arch. 432, 782–790 (1996). https://doi.org/10.1007/s004240050199

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050199

Key words

Navigation