Skip to main content
Log in

Spatial heterogeneity of blood flow in the dog heart. II. Temporal stability in response to adrenergic stimulation

  • Original Article
  • Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The effects of adrenergic stimulation on local myocardial blood flow in the left ventricle were studied in 13 anaesthetized Beagle dogs using the tracer microsphere technique. Adrenergic stimulation was induced by intravenous infusion of orciprenaline (1–2 μg kg−1 min−1) over 15 min or by electrical stimulation of the left ansa subclavia (10 Hz, 1 ms, 4–8 V) over 5 min. Local myocardial blood flow was analysed in 256 samples with an average (±SD) mass of 318±49 mg from the left ventricular myocardium using a standardized dissection procedure. Orciprenaline increased the average myocardial blood flow from 0.85±0.18 to 1.73±0.27 ml min−1 g−1, while oxygen consumption and the pressure-rate product increased by 129 and 119% respectively. The coefficients of variation of local myocardial blood flow, a measure of spatial blood flow heterogeneity, were 0.21 and 0.18 under control and orciprenaline respectively. Except for a slight transmural gradient (endomyocardium/epimyocardium flow ratio 1.19) myocardial blood flow did not exhibit significant spatial gradients. Stimulation with orciprenaline increased the average blood flow in all regions of the left ventricle by comparable extents. However, local blood flow during orciprenaline was significantly lower in samples from regions which had a lower blood flow under resting control conditions. A significant positive relationship was obtained between local myocardial blood flow under resting conditions and orciprenaline (r=0.45±0.18). Moreover, after recovery from orciprenaline stimulation (i.e. 40–112 min after the end of orciprenaline infusion) local myocardial blood flow exhibited a high degree of correlation with local flow before orciprenaline (r=0.71±0.08). Comparable results were obtained with electrical stimulation of the left ansa subclavia. For the comparison stimulation vs. control, the correlation coefficient of local blood flow was 0.52±0.04 and for recovery vs. control 0.77±0.06. From these results it is concluded firstly that local myocardial blood flow under resting conditions is an important determinant of local flow during adrenergic stimulation. Secondly, the anatomical region does not have any predictive value for the blood flow change during adrenergic stimulation and finally, the close relationship between local blood flow before and after cardiac stimulation indicates that the spatial blood flow heterogeneity is temporally stable over hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham A (1969) Die mikroskopische Innervation des Her- zens und der Blutgefäße von Vertebraten. Akademiai Kiado, Budapest

    Google Scholar 

  2. Austin RE, Aldea SG, Coggins DL, Flynn AE, Hoffman JIE (1990) Profound spatial heterogeneity of coronary reserve. Discordance between patterns of resting and maximal myocardial blood flow. Circ Res 67:319–331

    PubMed  Google Scholar 

  3. Bassingthwaighte JB, Malone MA, Moffett TC, King RB, Little SE, Link JM, Krohn KA (1987) Validity of microsphere depositions for regional myocardial flows. Am J Physiol 253:H184-H193

    PubMed  CAS  Google Scholar 

  4. Bretschneider HJ (1964) Vergleichende Untersuchungen von Koronar- und Nierendurchblutung unter der Wirkung von Sympathomimetika, Sympatholytika und Adenosinkörpern. In: Fleckenstein A (ed) 4. Freiburger Colloquium „Kreislaufmessungen”. Banaschewski, Freiburg, pp 104–125

    Google Scholar 

  5. Caldwell JH, Martin GV, Raymond GM, Bassingthwaighte JB (1994) Regional myocardial blood flow and capillary permeability-surface area products are nearly. proportional. Am J Physiol 267:H654-H666

    PubMed  CAS  Google Scholar 

  6. Feigl EO (1983) Coronary physiology. Physiol Rev 63:1–205

    PubMed  CAS  Google Scholar 

  7. Feigl EO, D’Alecy LG (1972) Normal arterial blood pH, oxygen, and carbon dioxide tensions in unanesthetized dogs. J Appl Physiol 32:152–153

    CAS  Google Scholar 

  8. Groeneveld ABJ, Van Lambalgen AA, Van den Bos GC, Nauta JJP, Thijs LG (1992) Metabolic vasodilation with glucose-insulin-potassium does not change the heterogeneous distribution of coronary blood flow in the dog. Cardiovasc Res 26:757–764

    Article  PubMed  CAS  Google Scholar 

  9. Heusch G, Deussen A, Schipke J, Thämer V (1984) α1- And α2-adrenoceptor-mediated vasoconstriction of large and small canine coronary arteries in vivo. J Cardiovasc Pharmacol 6:961–968

    Article  PubMed  CAS  Google Scholar 

  10. Heyman MA, Payne PD, Hoffman JIE, Rudolph AM (1977) Blood flow measurements with radionuclide-labeled microspheres. Prog Cardiovasc Dis 20:55–79

    Article  Google Scholar 

  11. Hoffman BB, Lefkowitz RJ (1996) Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman JG, Limbird LE (eds) Goodman and Gilman’s The pharmacological basis of therapeutics. McGraw-Hill, New York, pp 199–248

    Google Scholar 

  12. Khouri EM, Gregg DE, Rayford CR (1965) Effect of exercise on cardiac output, left coronary flow and myocardial metabolism in the unanesthetized dog. Circ Res 17:427–437

    PubMed  CAS  Google Scholar 

  13. King RB, Bassingthwaighte JB, Hales JRS, Rowell LB (1985) Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ Res 57:285–295

    PubMed  CAS  Google Scholar 

  14. Marcus ML, Kerber RE, Erhardt JC, Falsetti HL, Davis DM, Abbout FM (1977) Spatial and temporal heterogeneity of left ventricular perfusion in awake dogs. Am Heart J 94:748–754

    Article  PubMed  CAS  Google Scholar 

  15. Miyashiro J, Feigl EO (1993) Feedforward control of coronary blood flow via coronary β-receptor stimulation. Circ Res 73:252–263

    PubMed  CAS  Google Scholar 

  16. Ramirez J, Rodriguez E, Weiss HR (1994) Effect of isoproterenol on the relationship between regional cyclic AMP and local coronary blood flow in the canine myocardium. Pharmacology 48:41–48

    Article  PubMed  CAS  Google Scholar 

  17. Rinkema LE, Thomas JX, Randall WJ (1982) Regional coronary vasoconstriction in the response to stimulation of stellate ganglia. Am J Physiol 243:H410-H415

    PubMed  CAS  Google Scholar 

  18. Rodriguez E, Weiss HR (1993) Relationship between local myocardial adenylyl cyclase activity and local coronary blood flow in the dog heart. J Auton Pharmacol 13:95–103

    Article  PubMed  CAS  Google Scholar 

  19. Sonntag M, Deussen A, Schultz J, Loncar R, Hort W, Schrader J (1996) Spatial heterogeneity of blood flow in the dog heart. I. Glucose uptake, free adenosine and oxidative/glycolytic enzyme activity. Pflügers Arch 432:439–450

    Article  PubMed  CAS  Google Scholar 

  20. Tarnow J (1995) Herz-Kreislauf-Pharmaka. In: Doenicke A et al. (eds) Anästhesiologie. Springer, Berlin Heidelberg New York, pp 340–366

    Google Scholar 

  21. Trzeciakowski J, DeFily DV, Chilian WM (1995) Chaos in the regulation of coronary blood flow (abstract). FASEB J 9:A908

    Google Scholar 

  22. Van Citters RL, Franklin DL (1965) Cardiovascular performance of alaska sled dogs during exercise. Circ Res 24:33–42

    Google Scholar 

  23. Verhoeven L, Gerlock T, Weiss HR (1991) Relationship between myocardial tissue norepinephrine and coronary flow heterogeneity. Microvasc Res 41:289–298

    Article  PubMed  CAS  Google Scholar 

  24. Warltier DC, Gross GJ, Brooks HL (1981) Pharmacologic versus ischemia-induced coronary artery vasodilation. Am J Physiol 240:H767-H774

    PubMed  CAS  Google Scholar 

  25. Yipintsoi T, Dobbs WA, Scanlon PD, Knopp TJ, Bassingthwaighte JB (1973) Regional distribution of diffusible tracers and carbonized microspheres in the left ventricle of isolated dog hearts. Circ Res 33:573–587

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deussen, A., Lauer, T., Sonntag, M. et al. Spatial heterogeneity of blood flow in the dog heart. II. Temporal stability in response to adrenergic stimulation. Pflügers Arch — Eur J Physiol 432, 451–461 (1996). https://doi.org/10.1007/s004240050157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050157

Key words

Navigation