Skip to main content

Advertisement

Log in

Effect of alkalinization of cytosolic pH by amines on intracellular Ca2+ activity in HT29 cells

  • Original Article
  • Transport processes, metabolism and endocrinology; kidney, gastrointestinal tract, and exocrine glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The effect of secondary, tertiary and quaternary methyl- and ethylamines on intracellular pH (pH;) and intracellular Ca2+ activity ([Ca2+ ]i;) of HT29 cells was investigated microspectrofluorimetrically using pH- and Ca2+- sensitive fluorescent indicators, [i.e. 2′,7′-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) and fura-2 respectively]. Membrane voltage (Vm) was studied by the patch-clamp technique. Secondary and tertiary amines led to a rapid and stable concentration-dependent alkalinization which was independent of their pK a value. Trimethylamine (20 mmol/1) increased pH; by 0.78 ± 0.03 pH units (n = 9) and pH remained stable for the application time. Removal led to an undershoot of pHi and a slow and incomplete recovery: pH, stayed 0.26 ±0.06 pH units more acid than the resting value. The quaternary amines, tetramethyl- and tetraethylamine were without influence on pHi. All tested secondary and tertiary amines (dimethyl-, diethyl-, trimethyl-, and triethylamine) induced a [Ca2+]i transient which reached a peak value within 10-25 s and then slowly declined to a [Ca2+]i plateau. The initial Δ[Ca2+]; induced by trimethylamine (20 mmol/1) was 160 ± 15 nmol/1 (n = 17). The [Ca2+]i peak was independent of the Ca2+ activity in the bath solution, but the [Ca2+]i plateau was significantly lower under Ca2+-free conditions and could be immediately interrupted by application of CO2 (10%; n = 6), a manoeuvre to acidify pHi in HT29 cells. Emptying of the carbachol- or neurotensin-sensitive intracellular Ca2+ stores completely abolished this [Ca2+]j transient. Tetramethylamine led to higher [Ca2+]j changes than the other amines tested and only this transient could be completely blocked by atropine (10-6 mol/1). Trimethylamine (20 mmol/1) hyperpolarized Vm by 22.5 ± 3.7 mV (n = 16) and increased the whole-cell conductance by 2.3 ± 0.5 nS (n = 16). We conclude that secondary and tertiary amines induce stable alkaline pHi changes, release Ca2+ from intracellular, inositol-1,4,5-trisphosphate-sensitive Ca2+ stores and increase Ca2+ influx into HT29 cells. The latter may be related to both the store depletion and the hyperpolarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Battle DC, Peces R, LaPointe MS, Ye M, Daugirdas JT (1993) Cytosolic free calcium regulation in response to acute changes in intracellular pH in vascular smooth muscle. Am J Physiol 264:C932-C943

    Google Scholar 

  2. Bleich M, Köttgen M, Schlatter E, Greger R (1995) Effect of NH +4 /NH3 on cytosolic pH and the K+ channels of freshly isolated cells from the thick ascending limb of Henle’s loop. Pflügers Arch 429:345–354

    Article  PubMed  CAS  Google Scholar 

  3. Boron WF, De Weer P (1976) Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol 67:91–112

    Article  PubMed  CAS  Google Scholar 

  4. Boron WF, Boyarsky G, Ganz M (1989) Regulation of intracellular pH in renal mesangial cells. Ann N Y Acad Sci 574: 321–332

    Article  PubMed  CAS  Google Scholar 

  5. Burckhardt B-C, Frömter E (1992) Pathways of NH3/NH +4 permeation across Xenopus laevis oocyte cell membrane. Pflügers Arch 420:83–86

    Article  PubMed  CAS  Google Scholar 

  6. Busche R, Jeromin A, v. Engelhardt W, Rechkemmer G (1993) Basolateral mechanisms of intracellular pH regulation in the colonie epithelial cell line HT29 clone 19A. Pflügers Arch 425: 219–224

    Article  PubMed  CAS  Google Scholar 

  7. Cook DI, Poronnik P, Young JA (1990) Characterization of a 25-pS nonselective cation channel in a cultured secretory epithelial cell line. J Membr Biol 114:37 52

    PubMed  Google Scholar 

  8. Danthuluri NR, Kim D, Brock TA (1990) Intracellular alkalinization leads to Ca2+ mobilization from agonist-sensitive pools in bovine aortic endothelial cells. J Biol Chem 265: 19071–19076

    PubMed  CAS  Google Scholar 

  9. Ecke D, Bleich M, Greger R (1996) Crypt base cells show forskolin-induced Cl- secretion but no cation inward conductance. Pflügers Arch 431:427–434

    Article  PubMed  CAS  Google Scholar 

  10. Ganz MB, Rasmussen J, Bollag WB, Rasmussen H (1990) Effect of buffer systems and pH, on the measurement of [Ca2+]i with fura 2. FASEB J 4:1638–1644

    PubMed  CAS  Google Scholar 

  11. Geibel J, Giebisch G, Boron WF (1990) Angiotensin II stimulates both Na+-H+ exchange and Na+/HCO 3 cotransport in the rabbit proximal tubule. Proc Natl Acad Sci USA 87: 7917–7920

    Article  PubMed  CAS  Google Scholar 

  12. Greger R, Kunzelmann K (1991) Simultaneous recording of the cell membrane potential and properties of the cell attached membrane of HT29 colon carcinoma and CFPAC-1 cells. Pflügers Arch 419:209–211

    Article  PubMed  CAS  Google Scholar 

  13. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  14. Guse AH, Roth E, Emmrich F (1994) Ca2+ release and Ca2+ entry induced by rapid cytosolic alkalinization in Jurkat T-lymphocytes. Biochem J 301:83–88

    PubMed  CAS  Google Scholar 

  15. Iino S, Hayashi H, Saito H, Tokuno H, Tomita T (1994) Effects of intracellular pH on calcium currents and intracellular calcium ions in the smooth muscle of rabbit portal vein. Exp Physiol 79:669–680

    PubMed  CAS  Google Scholar 

  16. James-Kracke MR (1992) Quick and accurate method to convert BCECF fluorescence to pH,: Calibration in three different types of cell preparations. J Cell Physiol 151:596–603

    Article  PubMed  CAS  Google Scholar 

  17. Juntti-Berggren L, Civelek VN, Berggren P-O, Schultz V, Corkey BE, Toraheim K (1994) Glucose-stimulated increase in cytoplasmic pH precedes increase in free Ca2+ in pancreatic β-cells. A possible role for pyruvate. J Biol Chem 269: 14391–14395

    PubMed  CAS  Google Scholar 

  18. Kikeri D, Sun AM, Zeidel ML, Hebert SC (1992) Cellular NH +4 /NH3 transport pathways in mouse medullary thick limb of Henle. J Gen Physiol 99:435–461

    Article  PubMed  CAS  Google Scholar 

  19. Klöckner U, Isenberg G (1994) Intracellular pH modulates the availability of vascular L-type Ca2+ channels. J Gen Physiol 103:647–663

    Article  PubMed  Google Scholar 

  20. Kopp R, Lambrecht G, Mutschier E, Moser U, Tacke R, Pfeiffer A (1989) Human HT29 colon carcinoma cells contain muscarinic M3 receptors coupled to phosphoinositide metabolism. Eur J Pharmacol 172:397–405

    Article  PubMed  CAS  Google Scholar 

  21. Köttgen M, Leipziger J, Fischer K-G, Nitschke R, Greger R (1994) pH regulation in HT21l, colon carcinoma cells. Pflügers Arch 428:179–185

    Article  PubMed  Google Scholar 

  22. Leipziger J, Nitschke R, Greger R (1991) Transmitter-induced changes in cytosolic Ca2+ activity in HT29 cells. Cell Physiol Biochem 1:273–285

    Article  CAS  Google Scholar 

  23. Leipziger J, Fischer K-G, Greger R (1994) Voltage dependent Ca2+ influx in the epithelial cell line HT29: simultaneous use of intracellular Ca2+ measurements and nystatin perforated patch- clamp technique. Pflügers Arch 426:427–432

    Article  PubMed  CAS  Google Scholar 

  24. Martinez-Zaguilán R, Martinez GM, Lattanzio F, Gillies RJ (1991) Simultaneous measurement of intracellular pH and Ca2+ using the fluorescence of SNARF-1 and fura-2. Am J Physiol 260:C297-C307

    PubMed  Google Scholar 

  25. Michalak M (1988) Identification of the Ca2+-release activity and ryanodine receptor in sarcoplasmic-reticulum membranes during cardiac myogenesis. Biochem J 253:631–636

    PubMed  CAS  Google Scholar 

  26. Nitschke R, Fröbe U, Greger R (1991) Antidiuretic hormone acts via V1, receptors on intracellular calcium in the isolated perfused rabbit cortical thick ascending limb. Pflügers Arch 417:622–632

    Article  PubMed  CAS  Google Scholar 

  27. Nitschke R, Leipziger J, Greger R (1993) Agonist induced intracellular Ca2+ transients in HT29 cells. Pflügers Arch 423:519–526

    Article  PubMed  CAS  Google Scholar 

  28. Nitschke R, Riedel A, Benning N, Leipziger J, Fischer K-G, Greger R (1996) Intracellular pH changes induce [Ca2+]i transients in HT29 cells. Pflügers Arch (submitted)

  29. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:205–211

    Google Scholar 

  30. Sasaki S, Ishibashi K, Nagai T, Marumo F (1992) Regulation mechanism of intracellular pH of Xenopus laevis oocyte. Biochim Biophys Acta 1137:45–51

    Article  PubMed  CAS  Google Scholar 

  31. Schlatter E, Haxelmans S, Hirsch J, Leipziger J (1994) pH dependence of K+ conductances of rat cortical collecting duct principal cells. Pflügers Arch 428:631–640

    Article  PubMed  CAS  Google Scholar 

  32. Seagrave JC, Barker S, Curry M, Martinez JR (1992) Effects of NH4Cl and dimethylamine on Cl- fluxes in resting and stimulated rat submandibular acinar cells. Am J Physiol 263: G558- G565

    PubMed  CAS  Google Scholar 

  33. Shorte SL, Collingridge GL, Randall AD, Chappell JB, Schofield JG (1991) Ammonium ions mobilize calcium from an internal pool which is insensitive to TRH and ionomycin in bovine anterior pituitary cells. Cell Calcium 12:301–312

    Article  PubMed  CAS  Google Scholar 

  34. Shuttleworth TJ (1994) Ins P3 receptor and intracellular calcium release. In: Handbook of membrane channels. Academic Press, New York, pp 495–509

    Google Scholar 

  35. Siskind MS, McCoy CE, Chobanian A, Schwartz JH (1989) Regulation of intracellular calcium by cell pH in vascular smooth muscle cells. Am J Physiol 256: C234-C240

    PubMed  CAS  Google Scholar 

  36. Takahashi K-I, Dixon DB, Copenhagen DR (1993) Modulation of a sustained calcium current by intracellular pH in horizontal cells of fish retina. J Gen Physiol 101:695–714

    Article  PubMed  CAS  Google Scholar 

  37. Thomas JA, Buchsbaum RN, Zimniak A, Racker E (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218

    Article  PubMed  CAS  Google Scholar 

  38. Waisbren SJ, Geibel J, Modlin IM, Boron WF (1994) Unusual permeability properties of gastric gland cells. Nature 368: 332–335

    Article  PubMed  CAS  Google Scholar 

  39. Yodozawa S, Elliot AC (1993) Weak bases can mobilize calcium from intracellular stores in isolated rat lacrimal acinar cells. J Physiol (Lond) 467:338–342

    Google Scholar 

  40. Yoshitomi K, Burckhardt B-C, Frömter E (1985) Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflügers Arch 405: 360–366

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benning, N., Leipziger, J., Greger, R. et al. Effect of alkalinization of cytosolic pH by amines on intracellular Ca2+ activity in HT29 cells. Pflügers Arch — Eur J Physiol 432, 126–133 (1996). https://doi.org/10.1007/s004240050114

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050114

Key words

Navigation