Skip to main content

Advertisement

Log in

Myosin light chain diphosphorylation is enhanced by growth promotion of cultured smooth muscle cells

  • Orginal Article
  • Heart, circulation, respiration and blood; environmental and exercise physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The characteristics of actively growing smooth muscle cells (a variant, SM-3) were compared with those of growth-arrested cells with regard to response of myosin light chain (MLC) phosphorylation. Augmented MLC phosphorylation, in particular diphosphorylation, was observed in actively growing cells when stimulated with 30 μM prostaglandin F (PGF ). The maximum level of diphosphorylation in growing cells was significantly higher than that in growth-arrested cells. The MLC diphosphorylation was sensitive to protein kinase C down-regulation by phorbol dibutylate and pretreatment by the protein kinase inhibitors, staurosporine (30 nM) and isoquinoline sulphonamide HA 1077 (20 μM). The actively growing cells contained larger amounts of protein kinase C than growth-arrested cells. The phosphorylation sites of mono- and diphospho-MLC were determined to be MLC kinase-dependent sites (Thr18, Ser19). The PGF concentration/response curves of MLC diphosphorylation were shifted to the left and upwards in the presence of the protein phosphatase inhibitor calyculin A. These results suggest that PGF stimulation of actively growing SM-3 cells augments MLC kinase-dependent MLC diphosphorylation. Protein kinase C is involved indirectly in this reaction, possibly through MLC phosphatase-sensitive regulatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertrand ME, Lablanche JM, Fourier JL, Gommeaux A, Ruel M (1989) Relation to restenosis after percutaneous transfemoral coronary angioplasty to vasomotion of the dilated coronary arterial segment. Am J Cardiol 63:277–281

    Article  PubMed  CAS  Google Scholar 

  2. Campbell GR, Campbell JH (1985) Recent advances in molecular pathology. Smooth muscle phenotypic changes in arterial wall homeostasis: implications for atherosclerosis. Exp Mol Pathol 42:139–162

    Article  PubMed  CAS  Google Scholar 

  3. Cohen P (1989) The structure and regulation of protein phosphatases. Annu Rev Biochem 58:453–508

    Article  PubMed  CAS  Google Scholar 

  4. Colburn JC, Michnoff CH, Hsu LC, Slaughter CA, Kamm KE, Stull JT (1988) Sites phosphorylated in myosin light chain in contracting smooth muscle. J Biol Chem 263:19166–19173

    PubMed  CAS  Google Scholar 

  5. Ginsburg R, Bristow MR, Davis K, Dibiase A, Billingham ME (1984) Quantitative pharmacologic responses of normal and atherosclerotic isolated human coronary arteries. Circulation 69:430–440

    PubMed  CAS  Google Scholar 

  6. Glukhova MA, Kabakov AE, Frid MG, Ornatsky OI, Belkin AM, Mukhin DN, Orekhov AN, Koteliansky VE, Smirnov VN (1988) Modulation of human aorta smooth muscle cell phenotype: a study of muscle-specific variants of vinculin, caldesmon and actin expression. Proc Natl Acad Sci U S A 85:9542–9546

    Article  PubMed  CAS  Google Scholar 

  7. Gunther S, Alexander RW, Atkinson WJ, Gimbrone MA Jr (1982) Functional angiotensin Π receptors in cultured vascular smooth muscle cells. J Cell Biol 92:289–298

    Article  PubMed  CAS  Google Scholar 

  8. Ikebe M, Hartshorne DJ (1985) Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. J Biol chem 260:10027–10031

    PubMed  CAS  Google Scholar 

  9. Ikebe M, Hartshore DJ, Elzinga M (1987) Phosphorylation of the 20,000-dalton light chain of smooth muscle myosin by the calcium-activated, phospholipid-dependent protein kinase. J Biol Chem 262:9569–9573

    PubMed  CAS  Google Scholar 

  10. Itoh H, Shimomura A, Okubo S, Ichikawa K, Ito M, Konishi T, Nakano T (1993) Inhibition of myosin light chain phosphatase during Ca2+-independent vasocontraction. Am J Physiol 265:C1319-C1324

    PubMed  CAS  Google Scholar 

  11. Kamm KE, Hsu L-C, Kubota Y, Stull JT (1989) Phosphorylation of smooth muscle myosin heavy and light chains. Effects of phorbol dibutyrate and agonists. J Biol Chem 264:21223–21229

    PubMed  CAS  Google Scholar 

  12. Kamm KE, Stull JT (1989) Regulation of smooth muscle contractile elements by second messengers. Annu Rev Physiol 51:299–313

    Article  PubMed  CAS  Google Scholar 

  13. Kariya K, Kawahara Y, Fukuzaki H, Hagiwara M, Hidaka H, Fukumoto Y, Takai Y (1989) Two types of protein kinase C with different functions in cultured rabbit aortic smooth muscle cells. Biochem Biophys Res Commun 161:1020–1027

    Article  PubMed  CAS  Google Scholar 

  14. Katsuyama H, Morgan KG (1993) Mechanisms of Ca2+-independent contraction in single permeabilized ferret aorta cells. Circ Res 72:651–657

    PubMed  CAS  Google Scholar 

  15. Kawachi Y, Tomoike H, Maruoka Y, Kikuchi Y, Araki H, Ishii Y, Tanaka K, Nakamura M (1984) Selective hypercontraction casued by ergonovine in the canine coronary artery under conditions of induced atherosclerosis. Circulation 69:441–450

    PubMed  CAS  Google Scholar 

  16. Khalil RA, Lajoie C, Resnick MS, Morgan KG (1992) Ca2+- independent isoforms of protein kinase C differentially translocate in smooth muscle. Am J Physiol 263:C714-C719

    PubMed  CAS  Google Scholar 

  17. Kocher O, Gabbiani G (1986) Cytoskeletal features of normal and atheromatous human arterial smooth muscle cells. Hum Pathol 17:875–880

    Article  PubMed  CAS  Google Scholar 

  18. Kuro-o M, Nagai R, Nakahara K, Katoh H, Tsai RC, Tsuchimochi H, Yazaki Y, Ohkubo A, Takaku F (1991) cDNA cloning of myosin heavy chain isoforms in embryonic smooth muscle and its expression during vascular development and in arteriosclerosis. J Biol Chem 266:3768–3773

    PubMed  CAS  Google Scholar 

  19. Lopez JAG, Armstrong ML, Harrison DG, Piegors DJ, Heistad DD (1989) Vascular responses to leukocyte products in atherosclerotic primates. Circ Res 65:1078–1086

    PubMed  CAS  Google Scholar 

  20. Matsumoto H, Sasaki Y (1989) Staurosporine, a protein kinase C inhibitor interferes with proliferation of arterial smooth muscle cells. Biochem Biophys Res Commun 158:105–109

    Article  PubMed  CAS  Google Scholar 

  21. Monical PL, Owens GK, Murphy RA (1993) Expression of myosin regulatory light-chain isoforms and regulation of phoshorylation in smooth muscle. Am J Physiol 264: C1466-C1472

    PubMed  CAS  Google Scholar 

  22. Mosse PRL, Campbell GR, Wang ZL, Campbell JH (1985) Smooth muscle phenotypic expression in human carotid arteries. Lab Invest 53:556–562

    PubMed  CAS  Google Scholar 

  23. Ross R (1986) The pathogenesis of atherosclerosis-An update. N Engl J Med 314:488–500

    PubMed  CAS  Google Scholar 

  24. Rovner AS, Murphy RA, Owens GK (1986) Expression of smooth muscle and nonmuscle myosin heavy chains in cultured vascular smooth muscle cells. J Biol Chem 261:14740–14745

    PubMed  CAS  Google Scholar 

  25. Sakurada K, Ikuhara T, Seto M, Sasaki Y (1994) An antibody for phosphorylated myosin light chain of smooth muscle: application to a biochemical study. J Biochem 115:18–21

    PubMed  CAS  Google Scholar 

  26. Sasaki Y, Uchida T, Sasaki Y (1989) A variant derived from rabbit aortic smooth muscle: phenotype modulation and restoration of smooth muscle characteristics in cells in culture. J Biochem 106:1009–1018

    PubMed  CAS  Google Scholar 

  27. Sasaki Y, Iwata K, Sasaki Y (1990) Concanavalin A- and fetalcalf-serum-induced rounding and myosin light chain phosphorylation in cultured smooth muscle cells. J Cell Physiol 144:183–189

    Article  PubMed  CAS  Google Scholar 

  28. Sasaki Y, Seto M, Komatsu K (1990) Diphosphorylation of myosin light chain in smooth muscle cells in culture: possible involvement of protein kinase C. FEBS Lett 276:161–164

    Article  PubMed  CAS  Google Scholar 

  29. Sasaki Y, Seto M, Komatsu K, Omura S (1991) Staurosporine, a protein kinase inhibitor, attenuates intracellular Ca2+-dependent contractions of strips rabbit aorta. Eur J Pharmacol 202:367–372

    Article  PubMed  CAS  Google Scholar 

  30. Seto M, Sasaki Y, Sasaki Y (1990) Alteration in the myosin phosphorylation pattern of smooth muscle by phorbol ester. Am J Physiol 259: C769-C774

    PubMed  CAS  Google Scholar 

  31. Seto M, Sasaki Y. Sasaki Y (1990) Stimulus-specific patterns of myosin light chain phosphorylation in smooth muscle of rabbit thoracic artery. Pflügers Arch 415:484–489

    Article  PubMed  CAS  Google Scholar 

  32. Seto M, Sasaki Y, Sasaki Y, Hidaka H (1991) Effect of HA 1077, protein kinase inhibitor, on myosin phosphorylation and tension in smooth muscle. Eur J Pharmacol 195:267–272

    Article  PubMed  CAS  Google Scholar 

  33. Seto M, Yano K, Sasaki Y, Azuma H (1993) Intimai hyperplasia enhances myosin phosphorylation in rabbit carotid artery. Exp Mol Pathol 58:1–13

    Article  PubMed  CAS  Google Scholar 

  34. Shearman MS, Sekiguchi K, Nishizuka Y (1989) Modulation of ion channel activity: a key function of the proetin kinase C enzyme family. Pharmacol Rev 41:211–237

    PubMed  CAS  Google Scholar 

  35. Somlyo AP, Kitazawa T, Himpens B, Matthijis K, Horiuti S, Kobayashi Y, Goldman E, Somlyo AV (1989) Modulation of Ca2+ sensitivity and of the time course of contraction in smooth muscle: a major role of protein phosphatases. Adv Protein Phosphatases 5:181–195

    CAS  Google Scholar 

  36. Stull JT, Hsu L-C, Tansey MG, Kamm KE (1990) Myosin light chain kinase phosphorylation in tracheal smooth muscle. J Biol Chem 265:16683–16690

    PubMed  CAS  Google Scholar 

  37. Suematsu E, Resnick M, Morgan KG (1991) Change of Ca2+ requirement for myosin phosphorylation by prostaglandin F. Am J Physiol 261:C253-C258

    PubMed  CAS  Google Scholar 

  38. Yoshida M, Yagi K (1988) Two kinds of myosin phosphatases with different enzymatic properties from fresh chicken gizzard smooth muscle: purification and characterization. J Biochem 103:380–385

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seto, M., Sakurada, K., Kamm, K.E. et al. Myosin light chain diphosphorylation is enhanced by growth promotion of cultured smooth muscle cells. Pflügers Arch — Eur J Physiol 432, 7–13 (1996). https://doi.org/10.1007/s004240050099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050099

Key words

Navigation