Skip to main content

Advertisement

Log in

Renal expression of Na+-phosphate cotransporter mRNA and protein: Effect of the Gy mutation and low phosphate diet

  • Original Article
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The X-linked Gy mutation is closely linked, but not allelic, to Hyp and is characterized by rickets, hypophosphatemia, decreased renal tubular maximum for phosphate (Pi) reabsorption (TmP) and a specific reduction in renal brush-border membrane (BBM) Na+-Pi cotransport. Gy mice, like their normal litter-mates, respond to a low-Pi diet with an increase in BBM Na+-Pi cotransport, but fail to show an adaptive increase in Tmp. Using an antibody raised against the NH2 terminal peptide of the rat renal-specific Na+-Pi cotransporter (NaPi-2) and a NaPi-2 cDNA probe, we examined the effect of the Gy mutation and low-Pi diet (0.03% Pi) on NaPi-2 protein and mRNA abundance. The reduction in BBM Na+-Pi cotransport in Gy mice (51 ± 5% of normal, P < 0.05) was associated with a decrease in NaPi-2 protein (46 ± 12% of normal, P < 0.05) and mRNA abundance (76 ± 5%, P < 0.05). The low-Pi diet elicited a two-to three-fold increase in Na+-Pi cotransport in both normal and Gy mice that was accompanied by a large increase in NaPi-2 protein (10.2-fold in normal and 16.9-fold in Gy mice) and a modest increase in NaPi-2 mRNA (1.3-fold in both mouse strains, P < 0.05). The present data demonstrate that (1) the renal defect in BBM Pi transport in Gy mice can be ascribed to a deficit in NaPi-2 protein and mRNA abundance, (2) both normal and Gy mice respond to low Pi with an adaptive increase in NaPi-2 protein that exceeds the increase in Na+-Pi cotransport activity and NaPi-2 mRNA, (3) the adaptive increase in NaPi-2 protein and mRNA are not sufficient for the overall increase in TmP following Pi restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caverzasio J, Faundez R, Fleisch H, Bonjour J-P (1981) Tubular adaptation to Pi restriction in hypophysectomized rats. Pflügers Arch 392:17–21

    Article  PubMed  CAS  Google Scholar 

  2. Corbeil D, Milhiet P, Simon V, Ingram J, Kenny AJ, Boileau G, Crine P (1993) Rat endopeptidase-24.18 a subunit is secreted into the culture medium as a zymogen when expressed by COS-1 cells. FEBS Lett 335:361–366

    Article  PubMed  CAS  Google Scholar 

  3. Custer M, Lötscher M, Biber J, Murer H, Kaissling B (1994) Expression of Na-Pi cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am J Physiol 266:F767-F774

    PubMed  CAS  Google Scholar 

  4. Eicher EM, Southard JL, Scriver CR, Glorieux FH (1976) Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci USA 73:4667–4671

    Article  PubMed  CAS  Google Scholar 

  5. Gray RW, Napoli JL (1983) Dietary phosphate deprivation increases 1,25-dihydroxyvitamin D3 synthesis in rat kidney in vitro. J Biol Chem 258:1152–1155

    PubMed  CAS  Google Scholar 

  6. Greger R, Lang F, Marchand G, Knox FG (1977) Site of renal phosphate reabsorption. Micropuncture and microperfusion study. Pflügers Arch 369:111–118

    Article  PubMed  CAS  Google Scholar 

  7. Harvey N, Tenenhouse HS (1992) Renal Na+-phosphate cotransport in X-linked Hyp mice responds appropriately to Na+-gradient, membrane potential and pH. J Bone Miner Res 7:563–571

    Article  PubMed  CAS  Google Scholar 

  8. Knox FG, Haramati A(1985) Renal regulation of phosphate excretion. In: Seldin DW, Giebisch G (eds) The kidney : physiology and pathophysiology. Raven, New York, pp. 1381–1396

    Google Scholar 

  9. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  10. Levi M, Lotscher M, Sorribas V, Custer M, Arar M, Kaissling B, Murer H, Biber J (1994) Cellular mechanisms of acute and chronic adaptation of rat renal phosphate transporter to alterations in dietary phosphate. Am J Physiol 267: F900-F908

    PubMed  CAS  Google Scholar 

  11. Lyon MF, Scriver CR, Baker LRI, Tenenhouse HS, Kronick J, Mandla S (1986) The Gy mutation: another cause of X-linked hypophosphatemia in mouse. Proc Natl Acad Sci USA 83:4899–4903

    Article  PubMed  CAS  Google Scholar 

  12. Magagnin S, Werner A, Markovich D, Sorribas V, Stange G, Biber J, Murer H (1993) Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci USA 90:5979–5983

    Article  PubMed  CAS  Google Scholar 

  13. Meyer RA Jr, Gray RW, Meyer MH (1980) Abnormal vitamin D metabolism in the X-linked hypophosphatemic mouse. Endocrinology 107:1577–1581

    Article  PubMed  CAS  Google Scholar 

  14. Meyer RA Jr, Meyer MH, Gray RW, Bruns ME (1995) Femoral abnormalities and vitamin D metabolism in X-linked hypophosphatemic (Hyp and Gy) mice. J Orthop Res 13:30–40

    Article  PubMed  CAS  Google Scholar 

  15. Muhlbauer RC, Bonjour J, Fleisch H (1982) Abnormal tubular adaptation to dietary Pi restriction in X-linked hypophosphatemic mice. Am J Physiol 242:F353-F359

    PubMed  CAS  Google Scholar 

  16. Poujeol P, Jamison RL, De Rouffignac C (1980) Phosphate reabsorption in juxtamedullary nephron terminal segments. Pflügers Arch 387:27–31

    Article  PubMed  CAS  Google Scholar 

  17. Qiu Z Q, Tenenhouse HS, Scriver CR (1993) Parental origin of mutant allele does not explain absence of gene dose in X-linked Hyp mice. Genet Res Camb 62:39–43

    CAS  Google Scholar 

  18. Scriver CR, Tenenhouse HS (1990) Conserved loci on the X chromosome confer phosphate homeostasis in mice and humans. Genet Res Camb 56:141–152

    CAS  Google Scholar 

  19. Scriver CR, Tenenhouse HS (1992) X-linked hypophosphatemia: a homologous phenotype in humans and mice with unusual organ-specific gene dosage. J Inherit Metab Dis 15:610–624

    Article  PubMed  CAS  Google Scholar 

  20. Tenenhouse HS, Jones G (1990) Abnormal regulation of renal vitamin D catabolism by dietary phosphate in murine X-linked hypophosphatemic rickets. J Clin Invest 85:1450–1455

    Article  PubMed  CAS  Google Scholar 

  21. Tenenhouse HS, Scriver CR (1979) Renal brush border membrane adaptation to phosphorus deprivation in the Hyp/Y mouse. Nature 281:225–227

    Article  PubMed  CAS  Google Scholar 

  22. Tenenhouse HS, Scriver CR, McInnes RR, Glorieux FH (1978) Renal handling of phosphate in vivo and in vitro by the X-linked hypophosphatemic male mouse: evidence for a defect in the brush border membrane. Kidney Int 14:236–244

    Article  PubMed  CAS  Google Scholar 

  23. Tenenhouse HS, Klugerman AH, Gurd W, Lapointe M, Tannenbaum GS (1988) Pituitary involvement in renal adaptation to phosphate deprivation. Am J Physiol 255:R373-R378

    PubMed  CAS  Google Scholar 

  24. Tenenhouse HS, Klugerman AH, Neal JL (1989) Effect of phos-phonoformic acid, dietary phosphate and the Hyp mutation on kinetically distinct phosphate transport processes in mouse kidney. Biochim Biophys Acta 984:207–213

    Article  PubMed  CAS  Google Scholar 

  25. Tenenhouse HS, Meyer RA Jr, Mandla S, Meyer MR, Gray RW (1992) Renal phosphate transport and vitamin D metabolism in X-linked hypophosphatemic Gv mice: responses to phosphate deprivation. Endocrinology 131:51–56

    Article  PubMed  CAS  Google Scholar 

  26. Tenenhouse HS, Werner A, Biber J, Ma S, Martel J, Roy S, Murer H (1994) Renal Na+-phosphate cotransport in murine X-linked hypophosphatemic rickets: molecular characterization. J Clin Invest 93:671–676

    Article  PubMed  CAS  Google Scholar 

  27. Tenenhouse HS, Martel J, Biber J, Murer H (1995) Effect of Pi restriction on renal Na+-Pi cotransporter mRNA and immunoreactive protein in X-linked Hyp mice. Am J Physiol 268:F1062-F1069

    PubMed  CAS  Google Scholar 

  28. Thornton SW, Tenenhouse HS, Martel J, Bockian RW, Meyer MR, Meyer RA (1994) X-linked hypophosphatemic Gy mice: renal tubular maximum for phosphate vs. brush-border transport after low-P diet. Am J Physiol 266:F309-F315

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A portion of these data has been presented in abstract form: Beck L, Meyer RA Jr, Meyer MH, Biber J, Murer H, Tenenhouse HS (1995) Effect of the X-linked Gy mutation and low phosphate diet on the renal brush-border membrane Na+-phosphate cotransport protein. J Am Soc Nephrol 6:943

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, L., Meyer, R.A., Meyer, M.H. et al. Renal expression of Na+-phosphate cotransporter mRNA and protein: Effect of the Gy mutation and low phosphate diet. Pflügers Arch. 431, 936–941 (1996). https://doi.org/10.1007/s004240050088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050088

Key words

Navigation