Skip to main content
Log in

cAMP-activation of amiloride-sensitive Na+ channels from guinea-pig colon expressed in Xenopus oocytes

  • Original Article
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Guinea-pig distal colonic mRNA injection into Xenopus laevis oocytes resulted in expression of functional active epithelial Na+ channels in the oocyte plasma membrane. Poly(A)+ RNA was extracted from distal colonic mucosa of animals fed either a high-salt (HS) or a low-salt (LS) diet. The electrophysiological properties of the expressed amiloride-sensitive Na+ conductances were investigated by conventional two-electrode voltage-clamp and patch-clamp measurements. Injection of poly(A)+ RNA from HS-fed animals [from hereon referred to as HS-poly(A)+ RNA] into oocytes induced the expression of amiloride-sensitive Na+ conductances. On the other hand, oocytes injected with poly(A)+ RNA from LS-fed animals [LS-poly(A)+ RNA] expressed a markedly larger amount of amiloride-blockable Na+ conductances. LS-poly(A)+ RNA-induced conductances were completely inhibitable by amiloride with a Ki of 77 nM, and were also blocked by benzamil with a K i of 1.8 nM. 5-(N-Ethyl-N-isopropyl)-amiloride (EIPA), even in high doses (25 µM), had no detectable effect on the Na+ conductances. Expressed amiloride-sensitive Na+ channels could be further activated by cAMP leading to nearly doubled clamp currents. When Na+ was replaced by K+, amiloride (1 µM) showed no effect on the clamp current. Single-channel analysis revealed slow gating behaviour, open probabilities (Po) between 0.4 and 0.9, and slope conductances of 3.8 pS for Na+ and 5.6 pS for Li+. The expressed channels showed to be highly selective for Na+ over K+ with a permeability ratio PnaPK> 20. Amiloride (500 nM) reduced channel Po to values < 0.05. All these features make the guineapig distal colon of LS-fed animals an interesting mRNA source for the expression of highly amiloride-sensitive Na+ channels in Xenopus oocytes, which could provide new insights in the regulatory mechanism of these channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asher C, Singer D, Eren R, Yeger O, Dascal N, Garty H (1992) NaCl--dependent expression of amiloride-blockable Na+-channel in Xenopus oocytes. Am J Physiol 262: G244-G248

    PubMed  CAS  Google Scholar 

  2. Canessa CM, Horisberger J-D, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470

    Article  PubMed  CAS  Google Scholar 

  3. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger J-D, Rossier BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467

    Article  PubMed  CAS  Google Scholar 

  4. Cathala G, Savouret J-F, Mendez B, West BL, Karin M, Martial JA, Baxter JD (1993) A method for isolation of intact translationally active ribonucleic acid. DNA 2:329–335

    Article  Google Scholar 

  5. Clauss W, Skadhauge E (1988) Modulation of Na and Cl transport by mineralocorticoids. Comp Biochem Physiol 90A: 583–589

    Article  CAS  Google Scholar 

  6. Clauss W. Dürr J, Rechkemmer G (1985) Characterization of conductive pathways in guinea pig distal colon in vitro. Am J Physiol 248:G176-G183

    PubMed  CAS  Google Scholar 

  7. Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). J Morphol 136:153–180

    Article  PubMed  CAS  Google Scholar 

  8. Garty H (1986) Mechanism of aldosterone action in tight epithelia. J Membr Biol 90:193–205

    Article  PubMed  CAS  Google Scholar 

  9. Garty H, Benos DJ (1988) Characteristics and regulatory mechanisms of the amiloride-blockable Na+-channel. Physiol Rev 68:309–373

    PubMed  CAS  Google Scholar 

  10. Goldman DE (1943) Potential, impedance, and recification in membranes. J Gen Physiol 27:37–60

    Article  CAS  Google Scholar 

  11. Hamill OP, Lane JW, McBride DW (1992) Amiloride: a molecular probe for mechanosensitive channels. Trends Pharmacol Sci 13:373–376

    Article  PubMed  CAS  Google Scholar 

  12. Horisberger J-D, Canessa CM, Rossier BC (1993) The epithelial sodium channel: recent developments. Cell Physiol Biochem 3:283–294

    Article  CAS  Google Scholar 

  13. Kleyman TR, Cragoe EJ (1988) Amiloride and its analogs as tools in the study of ion transport. J Membr Biol 105:1–21

    Article  PubMed  CAS  Google Scholar 

  14. Lingueglia E, Voilley N, Waldmann R, Lazdunski M, Barbry P (1993) Expression cloning of an epithelial amiloride-sensitive Na channel. A new channel type with homologies to Caenor-habditis elegans degenerins. FEBS Lett 318:95–99

    Article  PubMed  CAS  Google Scholar 

  15. Merlin D, Guo X, Laboisse CL, Hopfer U (1995) Ca2+ and cAMP activate different K+ conductances in the human intestinal goblet cell line HT29-C1.16E. Am J Physiol 268: C1503-C1511

    PubMed  CAS  Google Scholar 

  16. Palmer LG (1987) Ion selectivity of epithelial Na+ channels. J Membr Biol 96:97–106

    Article  PubMed  CAS  Google Scholar 

  17. Palmer LG (1992) Epithelial Na+ channels: function and diversity. Annu Rev Physiol 54:51–66

    Article  PubMed  CAS  Google Scholar 

  18. Palmer LG, Frindt G (1986) Amiloride-sensitive Na+-channels from the apical membrane of the rat cortical collecting tubule. Proc Natl Acad Sci 83:2767–2770

    Article  PubMed  CAS  Google Scholar 

  19. Rechkemmer G (1992) Effects of a low-sodium diet on electrolyte transport in the proximal and distal colon of the guineapig (Cavia porcellus). Comp Biochem Physiol 103A: 501–505

    Article  CAS  Google Scholar 

  20. Reifarth FW, Weiser T, Bentrup F-W (1994) Voltage- and Ca2+-dependence of the K+ channel in the vacuolar membrane of Chenopodium rubrum L. suspension cells. Biochim Biophys Acta 1192:79–87

    Article  PubMed  CAS  Google Scholar 

  21. Renard S, Voilley N, Bassilana F, Lazdunski M, Barbry P (1995) Localization and regulation by steroids of the α, β and τ subunits of the amiloride-sensitive Na+ channel in colon, lung and kidney. Pflüegers Arch 430:299–307

    Article  CAS  Google Scholar 

  22. Schild L, Canessa CM, Shimkets RA, Gautschi I, Lifton RP, Rossier BC (1995) A mutation in the epithelial sodium channel causing Liddle disease increases channel activity in the Xenopus laevis oocyte expression system. Proc Natl Acad Sci USA 92:5699–5703

    Article  PubMed  CAS  Google Scholar 

  23. Smith PR, Benos DJ (1991) Epithelial Na+-channels. Annu Rev Physiol 53:509–530

    PubMed  CAS  Google Scholar 

  24. Towle DW, Baksinski A, Richard N, Kordylewski M (1992) Characterisation of an endogenous Na/H-antiporter in Xenopus laevis oocytes. J Exp Biol 159:359–369

    Google Scholar 

  25. Weber W-M, Schwarz W and Passow H (1990) Endogenous D-glucose transport in oocytes of Xenopus laevis. J Membr Biol 111:93–102

    Google Scholar 

  26. Weber W-M, Püschel B, Steffgen J, Koepsell H, Schwarz W (1991) Comparison of a Na/D-Glucose cotransporter from rat intestine expressed in oocytes of Xenopus laevis with the endogenous cotransporter. Biochim Biophys Acta 1063:73–80

    Article  PubMed  CAS  Google Scholar 

  27. Weber W-M, Asher C, Garty H, Clauss W (1992) Expression of amiloride-sensitive Na+ channels of hen lower intestine in Xenopus oocytes: electrophysiological studies on the dependence of varying NaCl intake. Biochim Biophys Actal 1111: 159–164

    Article  CAS  Google Scholar 

  28. Weber W-M, Blank U, Clauss W (1995) Regulation of electrogenic Na+ transport across leech skin. Am J Physiol 268: R605-R613

    PubMed  CAS  Google Scholar 

  29. Weber W-M, Liebold KM, Reifarth FW, Uhr U, Clauss W (1995) Influence of extracellular Ca2+ on endogenous Cl- channels in Xenopus oocytes. Pflügers Arch 429:820–824

    Article  PubMed  CAS  Google Scholar 

  30. Weber W-M, Liebold KM, Clauss W (1995) Amiloride-sensitive Na+ conductance in native Xenopus oocytes. Biochim Biophys Acta 1239:201–206

    Article  PubMed  Google Scholar 

  31. Weber W-M, Liebold KM, Reifarth FW, Clauss W (1995) The Ca2+ induced leak current in Xenopus oocytes is indeed mediated through a Cl- channel. J Membr Biol 148:263–275

    PubMed  CAS  Google Scholar 

  32. Yang X-C, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebold, K.M., Reifarth, F.W., Clauss, W. et al. cAMP-activation of amiloride-sensitive Na+ channels from guinea-pig colon expressed in Xenopus oocytes. Pflügers Arch. 431, 913–922 (1996). https://doi.org/10.1007/s004240050085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050085

Key words

Navigation