Skip to main content
Log in

Recombinant troponin I substitution and calcium responsiveness in skinned cardiac muscle

  • Original Article
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Using treatment with vanadate solutions, we extracted native cardiac troponin I and troponin C (cTnI and cTnC) from skinned fibers of porcine right ventricles. These proteins were replaced by exogenously supplied TnI and TnC isoforms, thereby restoring Ca2+-dependent regulation. Force then depended on the negative logarithm of Ca2+ concentration (pCa) in a sigmoidal manner, the pCa for 50% force development, pCa50, being about 5.5. For reconstitution we used fast-twitch rabbit skeletal muscle TnI and TnC (sTnI and sTnC), bovine cTnI and cTnC or recombinant sTnIs that were altered by site-directed mutagenesis. Incubation with TnI inhibited isometric tension in TnI-extracted fibers in the absence of Ca2+, but restoration of Ca2+ dependence required incubation with both TnI and TnC. Relaxation at low Ca2+ levels and the steepness of the force/pCa relation depended on the concentration of exogenously supplied TnI in the reconstitution solution (range 20-150 µM), while Ca2+ sensitivity, i.e. the pCa50, was dependent on the isoform, and also on the concentration of TnC in the reconstitution solution. At pH 6.7, skinned fibers reconstituted with optimal concentrations of sTnC and sTnI (120 µM and 150 µM, respectively) were more sensitive to Ca2+ than those reconstituted with cTnC and cTnI (difference in pCa50 approx. 0.2 units). Rabbit sTnI was cloned and expressed in Escherichia coli using a high yield expression plasmid. We introduced point mutations into the TnI inhibitory region comprising the sequence of the minimal common TnC/actin binding site (-G104-K-F-K-R-P-P-L-R-R-V-R115-). The four mutants produced by substitution of T for P110, G for P110, G for L111, and G for K105 were chosen, based on previous work with synthetic peptides showing that single amino acid substitution in this region diminished the capacity of these peptides to inhibit acto-S1 ATPase or contraction of skinned fibers. Therefore, all amino acid residues of the inhibitory region are thought to contribute to biological activity of TnI. However, each of the recombinant TnIs could substitute for endogenous TnI. In combination with exogenous TnC, Ca2+ dependence could be restored when gly110 sTnI, thr110sTnI or gly111s TnI was used for reconstitution. The mutant glyl05sTnI, on the other hand, reduced the ability of skinned fibers to relax at low Ca2+ concentrations and it caused an increase in Ca2+ sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews MAW, Maughan DW, Nosek TM, Godt RE (1991) Ion-specific and general ionic effects on contraction of skinned fast-twitch skeletal muscle from the rabbit. J Gen Physiol 98:1105–1126

    Article  PubMed  CAS  Google Scholar 

  2. Arner A, Strauss JD, Svensson C, Rüegg JC (1995) Effects of thin filament regulation on the rate of tension development following photolytic release of ATP in skinned cardiac muscle. J Mol Cell Cardiol 27:615–623

    Article  PubMed  CAS  Google Scholar 

  3. Barth Z, Strauss JD, Heyder S, Van Eyk JE, Wiesner RJ, Rüegg JC (1995) Ca2+ sensitizing effects of EMD 53998 after troponin replacement in skinned fibres from porcine atria and ventricles. Pflügers Arch 430:220–229

    Article  PubMed  CAS  Google Scholar 

  4. Brandt PW, Diamond MS, Schachat FH (1984) The thin filament of vertebrate skeletal muscle co-operatively activates as a unit. J Mol Biol 180:379–384

    Article  PubMed  CAS  Google Scholar 

  5. Brenner B (1988) Effects of Ca2+ on crossbridge turnover kinetics in skinned single rabbit psoas fibres. Proc Natl Acad Sci USA 85:3265

    Article  PubMed  CAS  Google Scholar 

  6. Cachia PJ, Gariépy J, Hodges RS (1985) In: Hidaka H, Hartshorne NJ (eds) Calmodulin antagonist and cellular physiology; structural studies on calmodulin and troponin C: phenothiazine, peptide and protein interactions with Ca2+-induced helices. Academic Press, N.Y., pp 63–88

    Google Scholar 

  7. Ding XL, Akella AB, Gulati J (1995) Contributions of troponin I and troponin C to the acidic pH-induced depression of contractile Ca2+ sensitivity in cardiotrabeculae. Biochem J 34:2309–2316

    Article  CAS  Google Scholar 

  8. Dohet C, Al-Hillawi E, Trayer IP, Rüegg JC (1995) Reconstitution of skinned cardiac fibres with human recombinant cardiac troponin-I mutants and troponin-C. FEBS Lett 377:131–134

    Article  PubMed  CAS  Google Scholar 

  9. Ebashi S, Endo M (1968) Calcium ion and muscle contraction. Prog Biophys Mol Biol 18:125–183

    Article  Google Scholar 

  10. Farah CS, Miyamoto CA, Ramos CHI, Da Silva ACR, Quaggio RB, Fujimori K, Smillie LB, Reinach FC (1994) Structural and regulatory functions of the NH2- and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem 269:5230–5240

    PubMed  CAS  Google Scholar 

  11. Fujimori K, Sorenson M, Herzberg O, Moult J, Reinach FC (1990) Probing the calcium-induced conformational transition of troponin C with site-directed mutants. Nature 345: 182–184

    Article  PubMed  CAS  Google Scholar 

  12. Godt RE, Lindley BD (1982) Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibres of the frog. J Gen Physiol 80:279–297

    Article  PubMed  CAS  Google Scholar 

  13. Grammer JC, Cremo CR, Yount RG (1988) UV-induced vana-date-dependent modification and cleavage of skeletal subfragment 1 heavy chain. 1. Evidence for active site modification. Biochemistry 27:8408–8415

    Article  PubMed  CAS  Google Scholar 

  14. Greaser ML, Gergely J (1971) Reconstitution of troponin activity from three protein components. J Biol Chem 246:4226–4233

    PubMed  CAS  Google Scholar 

  15. Greaser ML, Gergely J (1973) Purification and properties of the components from troponin. J Biol Chem 248:2125–2133

    PubMed  CAS  Google Scholar 

  16. Gulati J, Scordilis S, Babu A (1988) Effect of troponin C on the cooperativity in Ca2+ activation of cardiac muscle. FEBS Lett 236:441–444

    Article  PubMed  CAS  Google Scholar 

  17. Güth K, Potter JD (1987) Effect of rigor and cycling cross-bridges on the structure of troponin C and on the Ca2+ affinity of the Ca2+-specific regulatory sites in skinned rabbit psoas fibers. J Biol Chem 262:13627–13635

    PubMed  Google Scholar 

  18. Hartshorne DJ, Theiner M, Mueller H (1969) Studies on tro-ponin. Biochim Biophys Acta 175:320–330

    PubMed  CAS  Google Scholar 

  19. Kerrick WGL, Zot HG, Hoar PE, Potter JD (1985) Evidence that the Sr2+ activation properties of cardiac troponin C are altered when substituted into skinned skeletal muscle fibres. J Biol Chem 260:15687–15693

    PubMed  CAS  Google Scholar 

  20. Kluwe L, Maéda K, Maéda Y (1993) E. coli expression and characterization of a mutant troponin I with the three cysteine residues substituted. FEBS Lett 325:83–88

    Article  Google Scholar 

  21. Levine BA, Moir AJG, Perry SV (1988) The interaction of troponin I with the N-terminal region of actin. Eur J Biochem 172:389–397

    Article  PubMed  CAS  Google Scholar 

  22. McAuliffe JJ, Lizhu G, Solaro RJ (1990) Changes in myofibrillar activation and troponin C Ca-binding associated with troponin-T isoform switching in developing rabbit heart. Circ Res 66:1204–1216

    PubMed  CAS  Google Scholar 

  23. Moir AJG, Levine BA, Goodearl AJ, Trayer JP (1987) The interaction of actin with myosin subfragment 1 and with pPDM-cross-linked S1: a1HNMR investigation. J Muscle Res Cell Motil 8:68–69

    Google Scholar 

  24. Morano I, Rüegg JC (1991) What does TnC-DANZ fluorescence reveal about the thin filament state? Pflügers Arch 418:333–337

    Article  PubMed  CAS  Google Scholar 

  25. Moss RL (1992) Ca2+ regulation of mechanical properties of striated muscle: mechanistic studies using extraction and replacement of regulatory proteins. Circ Res 70:865–884

    PubMed  CAS  Google Scholar 

  26. Moss RL, Lauer M, Giulian GG, Greaser ML (1986) Altered Ca2+ dependence of tension development in skinned skeletal muscle fibers following modification of troponin by partial substitution with cardiac troponin C. J Biol Chem 261: 6096–6099

    PubMed  CAS  Google Scholar 

  27. Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65

    Article  PubMed  CAS  Google Scholar 

  28. Rüegg JC, Morano I (1989) Calcium sensitivity modulation of cardiac myofibrillar proteins. J Cardiovasc Pharmacol 14: 20–23.

    Article  Google Scholar 

  29. Rüegg JC, Zeugner C, Van Eyk JE, Kay CM, Hodges RS (1989) Inhibition of TnI-TnC interaction and contraction of skinned muscle fibres by the synthetic peptide TnI(104-115). Pflügers Arch 414:430–436

    Article  PubMed  Google Scholar 

  30. Rüegg JC, Zeugner C, Van Eyk JE, Hodges RS, Trayer IP (1991) Myosin and troponin peptides affect calcium sensitivity of skinned muscle fibres. In: Rüegg JC (ed) Peptides as probes in muscle research. Springer, Berlin Heidelberg New York, pp 95–109

    Google Scholar 

  31. Solaro RJ, Kumar P, Blanchard EM, Martin AF (1986) Differential effects of pH on calcium activation of myofilaments of adult and perinatal dog hearts: evidence for developmental differences in thin filament regulation. Circ Res 58: 721–729

    PubMed  CAS  Google Scholar 

  32. Strauss JD, Zeugner C, Van Eyk JE, Bletz C, Troschka M, Rüegg JC (1992) Troponin replacement in permeabilized cardiac muscle: reversible extraction of troponin I by incubation with vanadate. FEBS Lett 310:229–234

    Article  PubMed  CAS  Google Scholar 

  33. Talbot JA, Hodges RS (1979) Synthesis and biological activity of an icosapeptide analog of the actomyosin ATPase inhibitory region of troponin I. J Biol Chem 254:3720–3723

    PubMed  CAS  Google Scholar 

  34. Talbot JA, Hodges RS (1981) Comparative studies on the inhibitory region of selected species of troponin-I. J Biol Chem 256:12374–12378

    PubMed  CAS  Google Scholar 

  35. Tobacman LS, Lee R (1987) Isolation and functional comparison of bovine cardiac troponin-T isoforms. J Biol Chem 262:4059–4064

    PubMed  CAS  Google Scholar 

  36. Van Eyk JE, Hodges RS (1988) The biological importance of each amino acid residue of the troponin I inhibitory sequence 104-115 in the interaction with troponin C and tropomyosin-actin. J Biol Chem 263:1726–1732

    PubMed  Google Scholar 

  37. Van Eyk JE, Hodges RS (1991) A synthetic peptide of the N-terminus of actin interacts with myosin. Biochemistry 30:11676–11682

    Article  PubMed  Google Scholar 

  38. Van Eyk JE, Sönnichsen FD, Sykes BD, Hodges RS (1991) Interaction of actin 1-28 with myosin and troponin I and the importance of these interactions to muscle regulation. In: Rüegg JC (ed) Peptides as probes in muscle research. Springer, Berlin Heidelberg New York, pp 15–32

    Google Scholar 

  39. Van Eyk JE Hodges RS (1993) The use of synthetic peptides to unravel the mechanism of muscle regulation. METHODS: A Companion to Methods in Enzymology 5:264–280

    Google Scholar 

  40. Van Eyk JE, Strauss JD, Hodges RS, Rüegg JC (1993) A synthetic peptide mimics troponin I function in the calcium-dependent regulation of muscle contraction. FEBS Lett 323: 223–228

    Article  PubMed  Google Scholar 

  41. Wattanapermpool J, Fuo X, Solaro RJ (1995) The unique amino-terminal peptide of cardiac troponin I regulates myofibrillar activity only when it is phosphorylated. J Mol Cell Cardiol 27:1383–1391

    Article  PubMed  CAS  Google Scholar 

  42. Zhang R, Zhao J, Mandveno A, Potter JD (1995) Cardiac troponin I phosphorylation increases the rate of cardiac muscle relaxation. Circ Res 76:1028–1035

    PubMed  CAS  Google Scholar 

  43. Zot AS, Potter JD (1987) Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu Rev Biophys Chem 16:535–559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strauss, J.D., Van Eyk, J.E., Barth, Z. et al. Recombinant troponin I substitution and calcium responsiveness in skinned cardiac muscle. Pflügers Arch. 431, 853–862 (1996). https://doi.org/10.1007/s004240050077

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050077

Key words

Navigation