Skip to main content

Advertisement

Log in

Cardiac hypertrophy that affects hyperthyroidism occurs independently of the NLRP3 inflammasome

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cardiac hypertrophy (CH) is an adaptive response to maintain cardiac function; however, persistent stress responses lead to contractile dysfunction and heart failure. Although inflammation is involved in these processes, the mechanisms that control cardiac inflammation and hypertrophy still need to be clarified. The NLRP3 inflammasome is a cytosolic multiprotein complex that mediates IL-1β production. The priming step of NLRP3 is essential for increasing the expression of its components and occurs following NF-κB activation. Hyperthyroidism triggers CH, which can progress to maladaptive CH and even heart failure. We have shown in a previous study that thyroid hormone (TH)-induced CH is linked to the upregulation of S100A8, leading to NF-κB activation. Therefore, we aimed to investigate whether the NLRP3 inflammasome is involved in TH-induced CH and its potential role in CH pathophysiology. Hyperthyroidism was induced in NLRP3 knockout (NLRP3-KO), Caspase-1-KO and Wild Type (WT) male mice of the C57Bl/6J strain, aged 8–12 weeks, by triiodothyronine (7 μg/100 g BW, i.p.) administered daily for 14 days. Morphological and cardiac functional analysis besides molecular assays showed, for the first time, that TH-induced CH is accompanied by reduced NLRP3 expression in the heart and that it occurs independently of the NLRP3 inflammasome and caspase 1-related pathways. However, NLRP3 is important for the maintenance of basal cardiac function since NLRP3-KO mice had impaired diastolic function and reduced heart rate, ejection fraction, and fractional shortening compared with WT mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Article data is available from the corresponding author on reasonable request.

References

  1. Aoyagi T, Matsui T (2011) The cardiomyocyte as a source of cytokines in cardiac injury. J Cell Sci Ther 2012(S5):003. https://doi.org/10.4172/2157-7013.s5-003

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barreto-Chaves ML, Carrillo-Sepúlveda MA, Carneiro-Ramos MS, Gomes DA, Diniz GP (2010) The crosstalk between thyroid hormones and the renin-angiotensin system. Vascul Pharmacol 52(3–4):166–170. https://doi.org/10.1016/j.vph.2009.10.009

    Article  CAS  PubMed  Google Scholar 

  3. Barreto-Chaves ML, Senger N, Fevereiro M, Parletta AC, Takano A (2020) Impact of hyperthyroidism on cardiac hypertrophy. Endocr Connect 9(3):R59-69. https://doi.org/10.1530/EC-19-0543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carneiro-Ramos MS, Diniz GP, Nadu AP, Almeida J, Vieira RL, Santos RA, Barreto-Chaves ML (2010) Blockage of angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Res Cardiol 105(3):325–335. https://doi.org/10.1007/s00395-010-0089-0

    Article  CAS  PubMed  Google Scholar 

  5. de Castro AL, Fernandes RO, Ortiz VD, Campos C, Bonetto JHP, Fernandes TRG, Conzatti A, Siqueira R, Tavares AV, Belló-Klein A, da Rosa Araujo AS (2018) Thyroid hormones decrease the proinflammatory TLR4/NF-κβ pathway and improve functional parameters of the left ventricle of infarcted rats. Mol Cell Endocrinol 461:132–142. https://doi.org/10.1016/j.mce.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  6. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35(3):569–582. https://doi.org/10.1016/s0735-1097(99)00630-0

    Article  CAS  PubMed  Google Scholar 

  7. Deng Y, Xie M, Li Q, Xu X, Ou W, Zhang Y, Xiao H, Yu H, Zheng Y, Liang Y, Jiang C, Chen G, Du D, Zheng W, Wang S, Gong M, Chen Y, Tian R, Li T (2021) Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpE. Circ Res 128(2):232–245. https://doi.org/10.1161/CIRCRESAHA.120.317933

    Article  CAS  PubMed  Google Scholar 

  8. Dillmann W (2010) Cardiac hypertrophy and thyroid hormone signaling. Heart Fail Rev 15(2):125–132. https://doi.org/10.1007/s10741-008-9125-7

    Article  CAS  PubMed  Google Scholar 

  9. Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2009) Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol 104(6):653–667. https://doi.org/10.1007/s00395-009-0043-1

    Article  CAS  PubMed  Google Scholar 

  10. Dörr M, Wolff B, Robinson DM, John U, Lüdemann J, Meng W, Felix SB, Völzke H (2005) The association of thyroid function with cardiac mass and left ventricular hypertrophy. J Clin Endocrinol Metab 90(2):673–677. https://doi.org/10.1210/jc.2004-1554

    Article  CAS  PubMed  Google Scholar 

  11. Fidler TP, Xue C, Yalcinkaya M, Hardaway B, Abramowicz S, Xiao T, Liu W, Thomas DG, Hajebrahimi MA, Pircher J, Silvestre-Roig C, Kotini AG, Luchsinger LL, Wei Y, Westerterp M, Snoeck HW, Papapetrou EP, Schulz C, Massberg S, Soehnlein O, Ebert B, Levine RL, Reilly MP, Libby P, Wang N, Tall AR (2021) The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592(7853):296–301. https://doi.org/10.1038/s41586-021-03341-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Foell D, Frosch M, Sorg C, Roth J (2004) Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation. Clin Chim Acta 344(1–2):37–51. https://doi.org/10.1016/j.cccn.2004.02.023

    Article  CAS  PubMed  Google Scholar 

  13. Frieler RA, Mortensen RM (2015) Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation 131(11):1019–1030. https://doi.org/10.1161/CIRCULATIONAHA.114.008788

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fu J, Wu H (2023) Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol 41:301–316. https://doi.org/10.1146/annurev-immunol-081022-021207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Furuya F, Ishii T, Tamura S, Takahashi K, Kobayashi H, Ichijo M, Takizawa S, Kaneshige M, Suzuki-Inoue K, Kitamura K (2017) The ligand-bound thyroid hormone receptor in macrophages ameliorates kidney injury via inhibition of nuclear factor-κB activities. Sci Rep 8(7):43960. https://doi.org/10.1038/srep43960

    Article  Google Scholar 

  16. Grebe A, Hoss F, Latz E (2018) NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ Res 122(12):1722–1740. https://doi.org/10.1161/CIRCRESAHA.118.311362

    Article  CAS  PubMed  Google Scholar 

  17. Guo H, Callaway JB, Ting JP (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 7:677–687. https://doi.org/10.1038/nm.3893

    Article  CAS  Google Scholar 

  18. Guo Z, Liu FY, Yang D, Wang MY, Li CF, Tang N, Ma SQ, An P, Yang Z, Tang QZ (2023) Salidroside ameliorates pathological cardiac hypertrophy via TLR4-TAK1-dependent signaling. Phytother Res 37(5):1839–1849. https://doi.org/10.1002/ptr.7701

    Article  CAS  PubMed  Google Scholar 

  19. van Hout GPJ, Bosch L (2018) The inflammasomes in cardiovascular disease. Exp Suppl 108:9–40. https://doi.org/10.1007/978-3-319-89390-7_2

    Article  CAS  PubMed  Google Scholar 

  20. Hu LW, Benvenuti LA, Liberti EA, Carneiro-Ramos MS, Barreto-Chaves ML (2003) Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling. Am J Physiol Regul Integr Comp Physiol 285(6):R1473–R1480. https://doi.org/10.1152/ajpregu.00269.2003

    Article  CAS  PubMed  Google Scholar 

  21. Iordanidou A, Hadzopoulou-Cladaras M, Lazou A (2010) Non-genomic effects of thyroid hormone in adult cardiac myocytes: relevance to gene expression and cell growth. Mol Cell Biochem 340(1–2):291–300. https://doi.org/10.1007/s11010-010-0430-9

    Article  CAS  PubMed  Google Scholar 

  22. Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G (2021) Heart failure in diabetes. Metabolism 125:154910. https://doi.org/10.1016/j.metabol.2021.154910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kahaly GJ, Dillmann WH (2005) Thyroid hormone action in the heart. Endocr Rev 26(5):704–728. https://doi.org/10.1210/er.2003-0033

    Article  CAS  PubMed  Google Scholar 

  24. Karam S, Margaria JP, Bourcier A, Mika D, Varin A, Bedioune I, Lindner M, Bouadjel K, Dessillons M, Gaudin F, Lefebvre F, Mateo P, Lechène P, Gomez S, Domergue V, Robert P, Coquard C, Algalarrondo V, Samuel JL, Michel JB, Charpentier F, Ghigo A, Hirsch E, Fischmeister R, Leroy J, Vandecasteele G (2020) Cardiac overexpression of PDE4B blunts β-adrenergic response and maladaptive remodeling in heart failure. Circulation 142(2):161–174. https://doi.org/10.1161/CIRCULATIONAHA.119.042573

    Article  CAS  PubMed  Google Scholar 

  25. Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 281(30):20666–20672. https://doi.org/10.1074/jbc.M512671200

    Article  CAS  PubMed  Google Scholar 

  26. Klein I (1988) Thyroxine-induced cardiac hypertrophy: time course of development and inhibition by propranolol. Endocrinology 123(1):203–210. https://doi.org/10.1210/endo-123-1-203

    Article  CAS  PubMed  Google Scholar 

  27. Lakin R, Polidovitch N, Yang S, Parikh M, Liu X, Debi R, Gao X, Chen W, Guzman C, Yakobov S, Izaddoustdar F, Wauchop M, Lei Q, Xu W, Nedospasov SA, Christoffels VM, Backx PH (2023) Cardiomyocyte and endothelial cells play distinct roles in the tumor necrosis factor (TNF)-dependent atrial responses and increased atrial fibrillation vulnerability induced by endurance exercise training in mice. Cardiovasc Res. 15:cvad144. https://doi.org/10.1093/cvr/cvad144

    Article  CAS  Google Scholar 

  28. Li F, Zhang H, Yang L, Yong H, Qin Q, Tan M, Xu L, Liang K, Zong J, Qian W (2018) NLRP3 deficiency accelerates pressure overload-induced cardiac remodeling via increased TLR4 expression. J Mol Med (Berl) 96(11):1189–1202. https://doi.org/10.1007/s00109-018-1691-0

    Article  CAS  PubMed  Google Scholar 

  29. Lian YG, Zhao HY, Wang SJ, Xu QL, Xia XJ (2017) NLRP4 is an essential negative regulator of fructose-induced cardiac injury in vitro and in vivo. Biomed Pharmacother 91:590–601. https://doi.org/10.1016/j.biopha.2017.04.120

    Article  CAS  PubMed  Google Scholar 

  30. Lim S, Lee ME, Jeong J, Lee J, Cho S, Seo M, Park S (2018) sRAGE attenuates angiotensin II-induced cardiomyocyte hypertrophy by inhibiting RAGE-NFκB-NLRP3 activation. Inflamm Res 67(8):691–701. https://doi.org/10.1007/s00011-018-1160-9

    Article  CAS  PubMed  Google Scholar 

  31. Murphy SP, Kakkar R, McCarthy CP, Januzzi JL Jr (2020) Inflammation in heart failure: JACC state-of-the-art review. J Am Coll Cardiol 75(11):1324–1340. https://doi.org/10.1016/j.jacc.2020.01.014

    Article  PubMed  Google Scholar 

  32. Murray DR, Mummidi S, Valente AJ, Yoshida T, Somanna NK, Delafontaine P, Dinarello CA, Chandrasekar B (2012) β2 adrenergic activation induces the expression of IL-18 binding protein, a potent inhibitor of isoproterenol induced cardiomyocyte hypertrophy in vitro and myocardial hypertrophy in vivo. J Mol Cell Cardiol 52(1):206–218. https://doi.org/10.1016/j.yjmcc.2011.09.022

    Article  CAS  PubMed  Google Scholar 

  33. Nagoor Meeran MF, Azimullah S, Laham F, Tariq S, Goyal SN, Adeghate E, Ojha S (2020) α-Bisabolol protects against β-adrenergic agonist-induced myocardial infarction in rats by attenuating inflammation, lysosomal dysfunction, NLRP3 inflammasome activation and modulating autophagic flux. Food Funct 11(1):965–976. https://doi.org/10.1039/c9fo00530g

    Article  CAS  PubMed  Google Scholar 

  34. Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 7:387–407. https://doi.org/10.1038/s41569-018-0007-y

    Article  CAS  Google Scholar 

  35. Onódi Z, Ruppert M, Kucsera D, Sayour AA, Tóth VE, Koncsos G, Novák J, Brenner GB, Makkos A, Baranyai T, Giricz Z, Görbe A, Leszek P, Gyöngyösi M, Horváth IG, Schulz R, Merkely B, Ferdinandy P, Radovits T, Varga ZV (2011) AIM2-driven inflammasome activation in heart failure. Cardiovasc Res 117(13):2639–2651. https://doi.org/10.1093/cvr/cvab202

    Article  CAS  Google Scholar 

  36. Pantos C, Malliopoulou V, Varonos DD, Cokkinos DV (2004) Thyroid hormone and phenotypes of cardioprotection. Basic Res Cardiol 99(2):101–120. https://doi.org/10.1007/s00395-003-0449-0

    Article  CAS  PubMed  Google Scholar 

  37. Reis A, Barboza R, Murillo O, Barateiro A, Paixoto EPM, Lima FA, Gomes VM, Dombrowski JG, Leal VNC, Araujo F, Bandeira CL, Araujo RBD, Neres R, Souza RM, Costa FTM, Pontillo A, Bevilacqua E, Wrenger C, Wunderlich G, Palmisano G, Labriola L, Bortoluci KR, Penha-Gonçalves C, Gonçalves LA, Epiphanio S, Marinho CRF (2020) Inflammasome activation and IL-1 signaling during placental malária induce poor pregnancy outcomes. Sci Adv 6:eaax6346. https://doi.org/10.1126/sciadv.aax6346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sandanger Ø, Ranheim T, Vinge LE, Bliksøen M, Alfsnes K, Finsen AV, Dahl CP, Askevold ET, Florholmen G, Christensen G, Fitzgerald KA, Lien E, Valen G, Espevik T, Aukrust P, Yndestad A (2013) The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res 99(1):164–174. https://doi.org/10.1093/cvr/cvt091

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt-Ott UM, Ascheim DD (2006) Thyroid hormone and heart failure. Curr Heart Fail Rep 3:114–119. https://doi.org/10.1007/s11897-006-0010-1

    Article  CAS  PubMed  Google Scholar 

  40. da Silva IB, Gomes DA, Alenina N, Bader M, Dos Santos RA, Barreto-Chaves MLM (2018) Cardioprotective effect of thyroid hormone is mediated by AT2 receptor and involves nitric oxide production via Akt activation in mice. Heart Vessels 33(6):671–681. https://doi.org/10.1007/s00380-017-1101-5

    Article  PubMed  Google Scholar 

  41. Suetomi T, Miyamoto S, Brown JH (2019) Inflammation in nonischemic heart disease: initiation by cardiomyocyte CaMKII and NLRP3 inflammasome signaling. Am J Physiol Heart Circ Physiol 317(5):H877–H890. https://doi.org/10.1152/ajpheart.00223.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suetomi T, Willeford A, Brand CS, Cho Y, Ross RS, Miyamoto S, Brown JH (2018) Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by Ca2+/calmodulin-dependent protein kinase II δ signaling in cardiomyocytes are essential for adverse cardiac remodeling. Circulation 138(22):2530–2544. https://doi.org/10.1161/CIRCULATIONAHA.118.034621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takano AP, Diniz GP, Barreto-Chaves ML (2013) AMPK signaling pathway is rapidly activated by T3 and regulates the cardiomyocyte growth. Mol Cell Endocrinol 376(1–2):43–50. https://doi.org/10.1016/j.mce.2013.05.024

    Article  CAS  PubMed  Google Scholar 

  44. Takano APC, Munhoz CD, Moriscot AS, Gupta S, Barreto-Chaves MLM (2017) S100A8/MYD88/NF-қB: a novel pathway involved in cardiomyocyte hypertrophy driven by thyroid hormone. J Mol Med (Berl) 95(6):671–682. https://doi.org/10.1007/s00109-017-1511-y

    Article  CAS  PubMed  Google Scholar 

  45. Takano APC, Senger N, Barreto-Chaves MLM (2020) The endocrinological component and signaling pathways associated to cardiac hypertrophy. Mol Cell Endocrinol 518:110972. https://doi.org/10.1016/j.mce.2020.110972

    Article  CAS  PubMed  Google Scholar 

  46. Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee (2023) Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation 147(8):e93–e621. https://doi.org/10.1161/CIR.0000000000001123

    Article  PubMed  Google Scholar 

  47. Varela L, Martínez-Sánchez N, Gallego R, Vázquez MJ, Roa J, Gándara M, Schoenmakers E, Nogueiras R, Chatterjee K, Tena-Sempere M, Diéguez C, López M (2012) Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism. J Pathol 227(2):209–222. https://doi.org/10.1002/path.3984

    Article  CAS  PubMed  Google Scholar 

  48. De Vito P, Incerpi S, Pedersen JZ, Luly P, Davis FB, Davis PJ (2011) Thyroid hormones as modulators of immune activities at the cellular level. Thyroid 8:879–890. https://doi.org/10.1089/thy.2010.0429

    Article  CAS  Google Scholar 

  49. Xiao H, Li H, Wang JJ, Zhang JS, Shen J, An XB, Zhang CC, Wu JM, Song Y, Wang XY, Yu HY, Deng XN, Li ZJ, Xu M, Lu ZZ, Du J, Gao W, Zhang AH, Feng Y, Zhang YY (2018) IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. Eur Heart J 39(1):60–69. https://doi.org/10.1093/eurheartj/ehx261

    Article  CAS  PubMed  Google Scholar 

  50. Xu H, Yu W, Sun S, Li C, Ren J, Zhang Y (2021) TAX1BP1 protects against myocardial infarction-associated cardiac anomalies through inhibition of inflammasomes in a RNF34/MAVS/NLRP3-dependent manner. Sci Bull (Beijing) 66(16):1669–1683. https://doi.org/10.1016/j.scib.2021.01.030

    Article  CAS  PubMed  Google Scholar 

  51. Zong J, Zhang H, Li FF, Liang K, Liu JL, Xu LH, Qian WH (2018) NLRP1 promotes TGF-β1-induced myofibroblast differentiation in neonatal rat cardiac fibroblasts. J Mol Histol 49(5):509–518. https://doi.org/10.1007/s10735-018-9789-9

    Article  CAS  PubMed  Google Scholar 

  52. Zuurbier CJ (2019) NLRP3 inflammasome in cardioprotective signaling. J Cardiovasc Pharmacol 74(4):271–275. https://doi.org/10.1097/FJC.0000000000000696

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Foundation for the Support of Research in the State of São Paulo (FAPESP) [grant numbers 2019/17031–2 and 2021/06151–7], National Council of Technological and Scientific Development (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Aline Cristina Parletta: Conceived and designed research, performed experiments, analyzed data, interpreted results of experiments, prepared figures and drafted manuscript. Gabriela Cavazza Cerri: Performed western blotting, edited, and revised manuscript. Claudia Ribeiro Borba Gasparini, Karine Panico, Denival Nascimento Vieira-Junior, and Larissa Maria Zacarias-Rodrigues: Performed experiments—treatment and euthanasia of animals and histology. Nathalia Senger: Edited and revised manuscript. Amanda de Almeida Silva: Performed experiments – echocardiography. Marina Fevereiro: Provided technical support for methodologies performed in the lab. Gabriela Placoná Diniz: Discussed the results and revised manuscript. Maria Cláudia Costa Irigoyen: Analyzed data and interpreted results of echocardiography. Maria Luiza Morais Barreto-Chaves: Conceived and designed research, edited and revised manuscript, approved final version of manuscript.

Corresponding author

Correspondence to Maria Luiza Morais Barreto-Chaves.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All procedures were conducted according to the Brazilian law on the use of animals in science and approved by the Animal Ethics Committee of the Institute of Biomedical Sciences of the University of Sao Paulo (approval No 9768300119).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

424_2024_2965_MOESM1_ESM.tif

Supplementary file1 Figure S1. T3 treatment induced hyperthyroidism. A) Thyroxine (T4) circulating levels. B) Thyroid-stimulating hormone (TSH) circulating levels. C) Body weight gain. Data were analyzed by Student's t-test and are presented as mean ± SD. N=5 to 7 per group. (TIF 197 KB)

424_2024_2965_MOESM2_ESM.tif

Supplementary file2 Figure S2. Echocardiographic parameters. A) End diastolic volume (EDV). B) End systolic volume (ESV). C) Left ventricular internal diameter in diastole (LVIDd). D) Left ventricular diameter in systole (LVIDs). Data were analyzed by two-way ANOVA and are presented as mean ± SD. N=6 to 8 per group. (TIF 542 KB)

424_2024_2965_MOESM3_ESM.tif

Supplementary file3 Figure S3. NLRP3 deficiency prevented the increase in protein expression of TLR4 and NFκ-B as well as the increase in gene expression of IL-1β induced by T3. A) Representative Western Blotting image. B) Quantification of TLR4 protein expression. C) Quantification of NF-κB protein expression. Western blotting data were analyzed by two-way ANOVA and are presented as mean ± SD. N=3 to 6 per group. D) Quantitative PCR for IL-1β gene expression. PCR data were analyzed by Student's t-test and are presented as mean ± SD. N=5 to 6 per group. (TIF 670 KB)

Supplementary file4 (PDF 443 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parletta, A.C., Cerri, G.C., Gasparini, C.R.B. et al. Cardiac hypertrophy that affects hyperthyroidism occurs independently of the NLRP3 inflammasome. Pflugers Arch - Eur J Physiol (2024). https://doi.org/10.1007/s00424-024-02965-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00424-024-02965-6

Keywords

Navigation