Skip to main content
Log in

Exercise-induced cardiac mitochondrial reorganization and enhancement in spontaneously hypertensive rats

  • Organ Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The myocardium is a highly oxidative tissue in which mitochondria are essential to supply the energy required to maintain pump function. When pathological hypertrophy develops, energy consumption augments and jeopardizes mitochondrial capacity. We explored the cardiac consequences of chronic swimming training, focusing on the mitochondrial network, in spontaneously hypertensive rats (SHR). Male adult SHR were randomized to sedentary or trained (T: 8-week swimming protocol). Blood pressure and echocardiograms were recorded, and hearts were removed at the end of the training period to perform molecular, imaging, or isolated mitochondria studies. Swimming improved cardiac midventricular shortening and decreased the pathological hypertrophic marker atrial natriuretic peptide. Oxidative stress was reduced, and even more interesting, mitochondrial spatial distribution, dynamics, function, and ATP were significantly improved in the myocardium of T rats. In the signaling pathway triggered by training, we detected an increase in the phosphorylation level of both AKT and glycogen synthase kinase-3 β, key downstream targets of insulin-like growth factor 1 signaling that are crucially involved in mitochondria biogenesis and integrity. Aerobic exercise training emerges as an effective approach to improve pathological cardiac hypertrophy and bioenergetics in hypertension-induced cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Aebi H (1974) Catalase. Methods of enzymatic analysis. 673–684. https://doi.org/10.1016/B978-0-12-091302-2.50032-3

  2. Álvarez MC, Caldiz C, Fantinelli JC et al (2008) Is cardiac hypertrophy in spontaneously hypertensive rats the cause or the consequence of oxidative stress? Hypertens Res 31:1465–1476. https://doi.org/10.1291/HYPRES.31.1465

    Article  PubMed  Google Scholar 

  3. Animals NRC (US) C for the U of the G for the C and U of L (2011) Guide for the care and use of laboratory animals. Guide for the care and use of laboratory animals. https://doi.org/10.17226/12910

  4. Bang CN, Soliman EZ, Simpson LM et al (2017) Electrocardiographic left ventricular hypertrophy predicts cardiovascular morbidity and mortality in hypertensive patients: the ALLHAT Study. Am J Hypertens 30:914–922. https://doi.org/10.1093/AJH/HPX067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barth E, Stämmler G, Speiser B, Schaper J (1992) Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol 24:669–681. https://doi.org/10.1016/0022-2828(92)93381-S

    Article  CAS  PubMed  Google Scholar 

  6. Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128:191–227. https://doi.org/10.1016/J.PHARMTHERA.2010.04.005

    Article  CAS  PubMed  Google Scholar 

  7. Brocher J (2022) biovoxxel/BioVoxxel-Toolbox: BioVoxxel Toolbox. https://doi.org/10.5281/ZENODO.5986130

  8. Brouwers S, Sudano I, Kokubo Y, Sulaica EM (2021) Arterial hypertension. Lancet 398:249–261. https://doi.org/10.1016/S0140-6736(21)00221-X

    Article  CAS  PubMed  Google Scholar 

  9. Burgos JI, Yeves AM, Barrena JP et al (2017) Nitric oxide and CaMKII: critical steps in the cardiac contractile response To IGF-1 and swim training. J Mol Cell Cardiol 112:16–26. https://doi.org/10.1016/J.YJMCC.2017.08.014

    Article  CAS  PubMed  Google Scholar 

  10. Cai H, Griendling KK, Harrison DG (2003) The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 24:471–478. https://doi.org/10.1016/S0165-6147(03)00233-5

    Article  CAS  PubMed  Google Scholar 

  11. Calvert JW, Condit ME, Aragón JP et al (2011) Exercise protects against myocardial ischemia–reperfusion injury via stimulation of β3-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res 108:1448–1458. https://doi.org/10.1161/CIRCRESAHA.111.241117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Campos JC, Gomes KMS, Ferreira JCB (2013) Impact of exercise training on redox signaling in cardiovascular diseases. Food Chem Toxicol 62:107–119. https://doi.org/10.1016/J.FCT.2013.08.035

    Article  CAS  PubMed  Google Scholar 

  13. Cingolani HE, Ennis IL (2007) Sodium-hydrogen exchanger, cardiac overload, and myocardial hypertrophy. Circulation 115:1090–1100. https://doi.org/10.1161/CIRCULATIONAHA.106.626929

    Article  PubMed  Google Scholar 

  14. Cingolani HE, Ennis IL, Aiello EA, Pérez NG (2011) Role of autocrine/paracrine mechanisms in response to myocardial strain. Pflugers Arch 462:29–38. https://doi.org/10.1007/S00424-011-0930-9/FIGURES/5

    Article  CAS  PubMed  Google Scholar 

  15. Cunha TF, Bechara LRG, Bacurau AVN et al (2017) Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats. J Appl Physiol 122:817–827. https://doi.org/10.1152/japplphysiol.00182.2016.-We

    Article  CAS  PubMed  Google Scholar 

  16. Daubert MA, Douglas PS (2019) Primary prevention of heart failure in women. JACC Heart Fail 7:181–191. https://doi.org/10.1016/J.JCHF.2019.01.011

    Article  PubMed  Google Scholar 

  17. Das S, Morvan F, Jourde B et al (2015) ATP citrate lyase improves mitochondrial function in skeletal muscle. Cell Metab 21:868–876. https://doi.org/10.1016/J.CMET.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  18. da Silva Dias D, Bernardes N, Fernandes Stoyell-Conti F, et al (2020) Impact of combined exercise training on the development of cardiometabolic and neuroimmune complications induced by fructose consumption in hypertensive rats. https://doi.org/10.1371/journal.pone.0233785

  19. Den Brink-Van Van, Der Laan E, Antoinette Killian J, De Kruijff B (2004) Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta (BBA) - Biomembranes 1666:275–288. https://doi.org/10.1016/J.BBAMEM.2004.06.010

    Article  Google Scholar 

  20. De Champlain J, Wu R, Girouard H et al (2004) Oxidative stress in hypertension. Clin Exp Hypertens 26:593–601. https://doi.org/10.1081/CEH-200031904

    Article  CAS  PubMed  Google Scholar 

  21. Elmarakby AA, Sullivan JC (2021) Sex differences in hypertension: lessons from spontaneously hypertensive rats (SHR). Clin Sci (Lond) 135:1791–1804. https://doi.org/10.1042/CS20201017

    Article  CAS  PubMed  Google Scholar 

  22. Ennis I, Aiello E, Cingolani H, Perez N (2013) The autocrine/paracrine loop after myocardial stretch: mineralocorticoid receptor activation. Curr Cardiol Rev 9:230–240. https://doi.org/10.2174/1573403X113099990034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Folch J, Lees M, Sloane GH (1957) A simple method for the isolation and purification of total lipides from animal tissues*. J Biol Chem 226:497–509. https://doi.org/10.1016/S0021-9258(18)64849-5

    Article  CAS  PubMed  Google Scholar 

  24. Forouzanfar MH, Liu P, Roth GA et al (2017) Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 317:165–182. https://doi.org/10.1001/JAMA.2016.19043

    Article  PubMed  Google Scholar 

  25. Fritz M, Rinaldi G (2008) Blood pressure measurement with the tail-cuff method in Wistar and spontaneously hypertensive rats: influence of adrenergic- and nitric oxide-mediated vasomotion. J Pharmacol Toxicol Methods 58:215–221. https://doi.org/10.1016/J.VASCN.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  26. Garciarena CD, Pinilla OA, Nolly MB et al (2009) Endurance training in the spontaneously hypertensive rat: conversion of pathological into physiological cardiac hypertrophy. Hypertension 53:708–714. https://doi.org/10.1161/HYPERTENSIONAHA.108.126805

    Article  CAS  PubMed  Google Scholar 

  27. Gonano LA, Sepúlveda M, Rico Y et al (2011) Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias. Circ Arrhythm Electrophysiol 4:947–957. https://doi.org/10.1161/CIRCEP.111.964908

    Article  CAS  PubMed  Google Scholar 

  28. González-Domínguez Á, Visiedo F, Domínguez-Riscart J et al (2022) Catalase post-translational modifications as key targets in the control of erythrocyte redox homeostasis in children with obesity and insulin resistance. Free Radic Biol Med 191:40–47. https://doi.org/10.1016/J.FREERADBIOMED.2022.08.017

    Article  PubMed  Google Scholar 

  29. Graham DA, Rush JWE (2004) Exercise training improves aortic endothelium-dependent vasorelaxation and determinants of nitric oxide bioavailability in spontaneously hypertensive rats. J Appl Physiol 96:2088–2096. https://doi.org/10.1152/JAPPLPHYSIOL.01252.2003

    Article  CAS  PubMed  Google Scholar 

  30. Gu Q, Wang B, Zhang XF et al (2013) Contribution of hydrogen sulfide and nitric oxide to exercise-induced attenuation of aortic remodeling and improvement of endothelial function in spontaneously hypertensive rats. Mol Cell Biochem 375:199–206. https://doi.org/10.1007/S11010-012-1542-1/FIGURES/4

    Article  CAS  PubMed  Google Scholar 

  31. Guan Y, Drake JC, Yan Z (2019) Exercise-induced mitophagy in skeletal muscle and heart. Exerc Sport Sci Rev 47:151–156. https://doi.org/10.1249/JES.0000000000000192

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guers JJ, Kasecky-Lardner L, Farquhar WB et al (2019) Voluntary wheel running prevents salt-induced endothelial dysfunction: role of oxidative stress. J Appl Physiol 126:502–510. https://doi.org/10.1152/JAPPLPHYSIOL.00421.2018

    Article  CAS  PubMed  Google Scholar 

  33. Harvey S, Phillips JG, Rees A, Hall TR (1984) Stress and adrenal function. J Exp Zool 232:633–645. https://doi.org/10.1002/JEZ.1402320332

    Article  CAS  PubMed  Google Scholar 

  34. Higashi Y, Pandey A, Goodwin B, Delafontaine P (2013) Insulin-like growth factor-1 regulates glutathione peroxidase expression and activity in vascular endothelial cells: implications for atheroprotective actions of insulin-like growth factor-1. Biochim Biophys Acta 1832:391. https://doi.org/10.1016/J.BBADIS.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  35. Horvath SE, Daum G (2013) Lipids of mitochondria. Prog Lipid Res 52:590–614. https://doi.org/10.1016/J.PLIPRES.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  36. Ibañez MA, González Arbeláez LF, Ciocci Pardo A, et al (2022) Chronic GPER activation prevents ischemia/reperfusion injury in ovariectomized rats. Biochim Biophys Acta Gen Subj 1866:. https://doi.org/10.1016/J.BBAGEN.2021.130060

  37. Izumi C, Kitai T, Kume T et al (2019) Effect of left ventricular reverse remodeling on long-term outcomes after aortic valve replacement. Am J Cardiol 124:105–112. https://doi.org/10.1016/J.AMJCARD.2019.04.010

    Article  PubMed  Google Scholar 

  38. Kam KM, Zeng L, Zhou Q et al (2013) On assessing spatial uniformity of particle distributions in quality control of manufacturing processes. J Manuf Syst 32:154–166. https://doi.org/10.1016/J.JMSY.2012.07.018

    Article  Google Scholar 

  39. Lang RM, Bierig M, Devereux RB et al (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463. https://doi.org/10.1016/J.ECHO.2005.10.005

    Article  PubMed  Google Scholar 

  40. Levy D, Garrison RJ, Savage DD et al (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566. https://doi.org/10.1056/NEJM199005313222203

    Article  CAS  PubMed  Google Scholar 

  41. Litwiniuk A, Pijet B, Pijet-Kucicka M et al (2016) FOXO1 and GSK-3β are main targets of insulin-mediated myogenesis in C2C12 muscle cells. PLoS ONE 11:e0146726. https://doi.org/10.1371/JOURNAL.PONE.0146726

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lyon RC, Zanella F, Omens JH, Sheikh F (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116:1462–1476. https://doi.org/10.1161/CIRCRESAHA.116.304937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102:369–392. https://doi.org/10.1007/S00395-007-0666-Z/METRICS

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mårtensson CU, Doan KN, Becker T (2017) Effects of lipids on mitochondrial functions. Biochim Biophys Acta (BBA) - Mol Cell Biol Lipids 1862:102–113. https://doi.org/10.1016/J.BBALIP.2016.06.015

    Article  Google Scholar 

  45. Martin TG, Juarros MA, Leinwand LA (2023) Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol 20:347–363. https://doi.org/10.1038/S41569-022-00806-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martinez VR, Martins Lima A, Stergiopulos N et al (2023) Effect of the structural modification of candesartan with zinc on hypertension and left ventricular hypertrophy. Eur J Pharmacol 946:. https://doi.org/10.1016/J.EJPHAR.2023.175654

  47. McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients. J Mol Biol 361:462–469. https://doi.org/10.1016/J.JMB.2006.06.057

    Article  CAS  PubMed  Google Scholar 

  48. Medeiros A, Glanolla RM, Kalil LMP et al (2000) Effect of swimming training on the cardiovascular system in normotensive rats. Revista Paulista de Educação Física 14:7–15. https://doi.org/10.11606/ISSN.2594-5904.RPEF.2000.138013

  49. Medina AJ, Ibáñez AM, Diaz-Zegarra LA et al (2020) Cardiac up-regulation of NBCe1 emerges as a beneficial consequence of voluntary wheel running in mice. Arch Biochem Biophys 694:108600. https://doi.org/10.1016/J.ABB.2020.108600

    Article  CAS  PubMed  Google Scholar 

  50. Van Meer G, Voelker DR (2008) Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124. https://doi.org/10.1038/nrm2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mitchell GF, Jeron A, Koren G (1998) Measurement of heart rate and Q-T interval in the conscious mouse. Am J Physiol Heart Circ Physiol 274:747–751. https://doi.org/10.1152/AJPHEART.1998.274.3.H747/ASSET/IMAGES/LARGE/AHEA4030406.JPEG

    Article  Google Scholar 

  52. Murphy E (2004) Inhibit GSK-3β or there’s heartbreak dead ahead. J Clin Invest 113:1526–1528. https://doi.org/10.1172/JCI21986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Neri Serneri GG, Boddi M, Modesti PA et al (2001) Increased cardiac sympathetic activity and insulin-like growth factor-I formation are associated with physiological hypertrophy in athletes. Circ Res 89:977–982. https://doi.org/10.1161/HH2301.100982

    Article  CAS  PubMed  Google Scholar 

  54. Ozturk N, Olgar Y, Er H et al (2017) Swimming exercise reverses aging-related contractile abnormalities of female heart by improving structural alterations. Cardiol J 24:85–93. https://doi.org/10.5603/CJ.A2016.0069

    Article  PubMed  Google Scholar 

  55. Paradies G, Paradies V, De Benedictis V et al (2014) Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta (BBA) - Bioenerg 1837:408–417. https://doi.org/10.1016/J.BBABIO.2013.10.006

    Article  CAS  Google Scholar 

  56. Perez NG, Alvarez BV, Camilion de Hurtado MC, Cingolani HE (1995) pHi regulation in myocardium of the spontaneously hypertensive rat. Compensated enhanced activity of the Na(+)-H+ exchanger. Circ Res 77:1192–1200

    Article  CAS  PubMed  Google Scholar 

  57. Poehlman ET, Rosen CJ, Copeland KC (1994) The influence of endurance training on insulin-like growth factor-1 in older individuals. Metabolism 43:1401–1405. https://doi.org/10.1016/0026-0495(94)90035-3

    Article  CAS  PubMed  Google Scholar 

  58. Powers SK, Ji LL, Leeuwenburgh C (1999) Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 31:987–997. https://doi.org/10.1097/00005768-199907000-00011

    Article  CAS  PubMed  Google Scholar 

  59. Rapsomaniki E, Timmis A, George J et al (2014) Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet 383:1899–1911. https://doi.org/10.1016/S0140-6736(14)60685-1

    Article  PubMed  PubMed Central  Google Scholar 

  60. Reckelhoff JF, Romero DG, Yanes Cardozo LL (2019) Sex, oxidative stress, and hypertension: insights from animal models. Physiology (Bethesda) 34:178–188. https://doi.org/10.1152/PHYSIOL.00035.2018

    Article  CAS  PubMed  Google Scholar 

  61. Santulli G (2017) Mitochondrial dynamics in cardiovascular medicine. 982:. https://doi.org/10.1007/978-3-319-55330-6

  62. Schägger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783. https://doi.org/10.1093/EMBOJ/19.8.1777

    Article  PubMed  PubMed Central  Google Scholar 

  63. Scheinowitz M, Kessler-Icekson G, Freimann S et al (2003) Short- and long-term swimming exercise training increases myocardial insulin-like growth factor-I gene expression. Growth Hormon IGF Res 13:19–25. https://doi.org/10.1016/S1096-6374(02)00137-5

    Article  CAS  Google Scholar 

  64. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  65. Seppet EK, Eimre M, Anmann T et al (2005) Intracellular energetic units in healthy and diseased hearts. Exp Clin Cardiol 10:173–183

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sorriento D, Di Vaia E, Iaccarino G (2021) Physical exercise: a novel tool to protect mitochondrial health. Front Physiol 12:. https://doi.org/10.3389/FPHYS.2021.660068

  67. Stepanyants N, MacDonald PJ, Francy CA et al (2015) Cardiolipin’s propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission. Mol Biol Cell 26:3104–3116. https://doi.org/10.1091/MBC.E15-06-0330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301:2181–2190. https://doi.org/10.1152/AJPHEART.00554.2011

    Article  Google Scholar 

  69. Wang P, Li CG, Qi Z et al (2015) Acute exercise induced mitochondrial H2O2 production in mouse skeletal muscle: association with p66Shc and FOXO3a signaling and antioxidant enzymes. Oxid Med Cell Longev 2015:. https://doi.org/10.1155/2015/536456

  70. Weeks KL, Bernardo BC, Ooi JYY et al (2017) The IGF1-PI3K-Akt signaling pathway in mediating exercise-induced cardiac hypertrophy and protection. Adv Exp Med Biol 1000:187–210. https://doi.org/10.1007/978-981-10-4304-8_12

    Article  CAS  PubMed  Google Scholar 

  71. Weeks KL, McMullen JR (2011) The athlete’s heart vs. the failing heart: can signaling explain the two distinct outcomes? Physiology (Bethesda) 26:97–105. https://doi.org/10.1152/PHYSIOL.00043.2010

    Article  CAS  PubMed  Google Scholar 

  72. Wilkins BJ, Molkentin JD (2004) Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 322:1178–1191. https://doi.org/10.1016/J.BBRC.2004.07.121

    Article  CAS  PubMed  Google Scholar 

  73. Xu R, Hu Q, Ma Q et al (2014) The protease Omi regulates mitochondrial biogenesis through the GSK3β/PGC-1α pathway. Cell Death Dis 5:. https://doi.org/10.1038/CDDIS.2014.328

  74. Yang D, Liu H-Q, Liu F-Y et al (2022) Mitochondria in pathological cardiac hypertrophy research and therapy. Front Cardiovasc Med 8:. https://doi.org/10.3389/FCVM.2021.822969

  75. Yeves AM, Burgos JI, Medina AJ et al (2018) Cardioprotective role of IGF-1 in the hypertrophied myocardium of the spontaneously hypertensive rats: a key effect on NHE-1 activity. Acta Physiol (Oxf) 224:. https://doi.org/10.1111/APHA.13092

  76. Yeves AM, Ennis IL (2020) Na+/H+ exchanger and cardiac hypertrophy. Hipertens Riesgo Vasc 37:22–32. https://doi.org/10.1016/J.HIPERT.2019.09.002

    Article  CAS  PubMed  Google Scholar 

  77. Yeves AM, Villa-Abrille MC, Pérez NG et al (2014) Physiological cardiac hypertrophy: critical role of AKT in the prevention of NHE-1 hyperactivity. J Mol Cell Cardiol 76:186–195. https://doi.org/10.1016/J.YJMCC.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  78. Yildiz M, Oktay AA, Stewart MH et al (2020) Left ventricular hypertrophy and hypertension. Prog Cardiovasc Dis 63:10–21. https://doi.org/10.1016/J.PCAD.2019.11.009

    Article  PubMed  Google Scholar 

  79. Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together: cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277:43553–43556. https://doi.org/10.1074/JBC.C200551200

    Article  CAS  PubMed  Google Scholar 

  80. Zhang Y, Shan M, Ding X et al (2023) Maternal exercise represses Nox4 via SIRT1 to prevent vascular oxidative stress and endothelial dysfunction in SHR offspring. Front Endocrinol (Lausanne) 14:1219194. https://doi.org/10.3389/FENDO.2023.1219194/BIBTEX

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Omar Castillo, J. Omar Vélez Rueda, and Oscar Andrés Pinilla for their excellent technical assistance in the immunoblots and echocardiography determinations and analysis.

Funding

This research was supported in part by the Agencia Nacional de Promoción Científica y Tecnológica de Argentina (grant PICT 2019–00425), Consejo Nacional de Investigaciones Científicas y Tecnológicas (grant PIP 3297), and Universidad Nacional de La Plata (grant M11/233) awarded to Dr. Irene L. Ennis.

Author information

Authors and Affiliations

Authors

Contributions

J. Godoy Coto: conceptualization, investigation, formal analysis, visualization, writing—original draft, writing—review and editing, data curation, methodology. E. V. Pereyra: conceptualization, investigation, formal analysis, data curation. F. A. Cavalli: investigation, formal analysis, data curation. C. A. Valverde: investigation, formal analysis, writing—review and editing, data curation. C. I. Caldiz: conceptualization, writing—review and editing. S. M. Maté: investigation, formal analysis, writing—review and editing, data curation. A. M. Yeves: conceptualization, writing—review and editing. I. L. Ennis: conceptualization, data curation, formal analysis, visualization, methodology, investigation, supervision, project administration, writing—review and editing, funding acquisition, resources.

Corresponding authors

Correspondence to Alejandra M. Yeves or Irene L. Ennis.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest with this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 741 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godoy Coto, J., Pereyra, E.V., Cavalli, F.A. et al. Exercise-induced cardiac mitochondrial reorganization and enhancement in spontaneously hypertensive rats. Pflugers Arch - Eur J Physiol (2024). https://doi.org/10.1007/s00424-024-02956-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00424-024-02956-7

Keywords

Navigation