Skip to main content

Advertisement

Log in

The role of Na+-coupled bicarbonate transporters (NCBT) in health and disease

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cellular and organism survival depends upon the regulation of pH, which is regulated by highly specialized cell membrane transporters, the solute carriers (SLC) (For a comprehensive list of the solute carrier family members, see: https://www.bioparadigms.org/slc/). The SLC4 family of bicarbonate (HCO3) transporters consists of ten members, sorted by their coupling to either sodium (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE), chloride (AE1, AE2, AE3), or borate (BTR1). The ionic coupling of SLC4A9 (AE4) remains controversial. These SLC4 bicarbonate transporters may be controlled by cellular ionic gradients, cellular membrane voltage, and signaling molecules to maintain critical cellular and systemic pH (acid–base) balance. There are profound consequences when blood pH deviates even a small amount outside the normal range (7.35–7.45). Chiefly, Na+-coupled bicarbonate transporters (NCBT) control intracellular pH in nearly every living cell, maintaining the biological pH required for life. Additionally, NCBTs have important roles to regulate cell volume and maintain salt balance as well as absorption and secretion of acid–base equivalents. Due to their varied tissue expression, NCBTs have roles in pathophysiology, which become apparent in physiologic responses when their expression is reduced or genetically deleted. Variations in physiological pH are seen in a wide variety of conditions, from canonically acid–base related conditions to pathologies not necessarily associated with acid–base dysfunction such as cancer, glaucoma, or various neurological diseases. The membranous location of the SLC4 transporters as well as recent advances in discovering their structural biology makes them accessible and attractive as a druggable target in a disease context. The role of sodium-coupled bicarbonate transporters in such a large array of conditions illustrates the potential of treating a wide range of disease states by modifying function of these transporters, whether that be through inhibition or enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

This declaration is not applicable.

Notes

  1. For further information on NBCe1’s role in cancer, see below section on cancer.

  2. As multiple NBCTs are implicated in various cancers, these are discussed together in the Cancer section.

References

  1. Abuladze N, Lee I, Newman D, Hwang J, Boorer K, Pushkin A, Kurtz I (1998) Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J Biol Chem 273:17689–17695

    Article  CAS  PubMed  Google Scholar 

  2. Abuladze N, Song M, Pushkin A, Newman D, Lee I, Nicholas S, Kurtz I (2000) Structural organization of the human NBC1 gene: kNBC1 is transcribed from an alternative promoter in intron 3. Gene 251:109–122

    Article  CAS  PubMed  Google Scholar 

  3. Allen DG, Xiao XH (2003) Role of the cardiac Na+/H+ exchanger during ischemia and reperfusion. Cardiovasc Res 57:934–941

    Article  CAS  PubMed  Google Scholar 

  4. Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Aspects Med 34:494–515. https://doi.org/10.1016/j.mam.2012.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alvadia CM, Sommer T, Bjerregaard-Andersen K, Damkier HH, Montrasio M, Aalkjaer C, Morth JP (2017) The crystal structure of the regulatory domain of the human sodium-driven chloride/bicarbonate exchanger. Sci Rep 7:12131. https://doi.org/10.1038/s41598-017-12409-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amlal H, Burnham CE, Soleimani M (1999) Characterization of Na+/HCO3- cotransporter isoform NBC-3. Am J Physiol 276:F903-913

    CAS  PubMed  Google Scholar 

  7. Amlal H, Wang Z, Burnham C, Soleimani M (1998) Functional characterization of a cloned human kidney Na+:HCO3- cotransporter. J Biol Chem 273:16810–16815

    Article  CAS  PubMed  Google Scholar 

  8. Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, Abe Y, Hino T, Ikeda-Suno C, Kuma H, Kang D, Murata T, Hamakubo T, Cameron AD, Kobayashi T, Hamasaki N, Iwata S (2015) Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science 350:680–684. https://doi.org/10.1126/science.aaa4335

    Article  CAS  PubMed  Google Scholar 

  9. Azimov R, Abuladze N, Sassani P, Newman D, Kao L, Liu W, Orozco N, Ruchala P, Pushkin A, Kurtz I (2008) G418-mediated ribosomal read-through of a nonsense mutation causing autosomal recessive proximal renal tubular acidosis. Am J Physiol Renal Physiol 295:F633-641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barbuskaite D, Pedersen FD, Christensen HL, Johnsen LØ, Praetorius J, Damkier HH (2020) NBCe2 (Slc4a5) is expressed in the renal connecting tubules and cortical collecting ducts and mediates base extrusion. Frontiers in Physiology 11. https://doi.org/10.3389/fphys.2020.00560

  11. Bellemer A, Hirata T, Romero MF, Koelle MR (2011) Two types of chloride-extruding transporters are required for GABAA receptor-mediated inhibition in C. elegans. EMBO J 30:1852–1863. https://doi.org/10.1038/emboj.2011.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bevensee MO, Schmitt BM, Choi I, Romero MF, Boron WF (2000) An electrogenic Na/HCO3 cotransporter (NBC) with a novel C terminus, cloned from rat brain. Am J Physiol Cell Physiol 278:C1200–C1211

    Article  CAS  PubMed  Google Scholar 

  13. Boedtkjer E (2019) Na(+), HCO(3)(-) cotransporter NBCn1 accelerates breast carcinogenesis. Cancer Metastasis Rev 38:165–178. https://doi.org/10.1007/s10555-019-09784-7

    Article  CAS  PubMed  Google Scholar 

  14. Boedtkjer E, Moreira JM, Mele M, Vahl P, Wielenga VT, Christiansen PM, Jensen VE, Pedersen SF, Aalkjaer C (2013) Contribution of Na+, HCO3(-)-cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). Int J Cancer 132:1288–1299. https://doi.org/10.1002/ijc.27782

    Article  CAS  PubMed  Google Scholar 

  15. Boedtkjer E, Praetorius J, Aalkjaer C (2006) NBCn1 (slc4a7) mediates the Na+-dependent bicarbonate transport important for regulation of intracellular pH in mouse vascular smooth muscle cells. Circ Res 98:515–523. https://doi.org/10.1161/01.RES.0000204750.04971.76

    Article  CAS  PubMed  Google Scholar 

  16. Bok D, Schibler MJ, Pushkin A, Sassani P, Abuladze N, Naser Z, Kurtz I (2001) Immunolocalization of electrogenic sodium-bicarbonate cotransporters pNBC1 and kNBC1 in the rat eye. Am J Physiol Renal Physiol 281:F920-935

    Article  CAS  PubMed  Google Scholar 

  17. Boron WF (1986) Intracellular pH regulation in epithelial cells. Annu Rev Physiol 48:377–388. https://doi.org/10.1146/annurev.ph.48.030186.002113

    Article  CAS  PubMed  Google Scholar 

  18. Boron WF, Boulpaep EL (2017) Medical physiology, 3rd edn. Elsevier, Philadelphia

    Google Scholar 

  19. Boron WF, Chen L, Parker MD (2009) Modular structure of sodium-coupled bicarbonate transporters. J Exp Biol 212:1697–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boron WF, Sackin H (1983) Measurement of intracellular ionic composition and activities in renal tubules. Annu Rev Physiol 45:483–496

    Article  CAS  PubMed  Google Scholar 

  21. Bouyer P, Sakai H, Itokawa T, Kawano T, Fulton CM, Boron WF, Insogna KL (2007) Colony-stimulating factor-1 increases osteoclast intracellular pH and promotes survival via the electroneutral Na/HCO3 cotransporter NBCn1. Endocrinology 148:831–840. https://doi.org/10.1210/en.2006-0547

    Article  CAS  PubMed  Google Scholar 

  22. Brady CT, Dugandžić A, Parker M, Romero MF (2021) NBCe1, an electrogenic Na+ bicarbonate (carbonate) cotransporter, in epithelia. In: Hamilton KL, Devor DC (eds) Ion channels and transporters of epithelia in health and disease, 2nd edition. Springer (Am Physiol Soc), New York, pp 93–124. https://doi.org/10.1007/978-3-030-55454-5_4

  23. Brady CT, Marshall A, Zhang C, Parker MD (2023) NBCe1-B/C-knockout mice exhibit an impaired respiratory response and an enhanced renal response to metabolic acidosis. Front Physiol 14:1201034. https://doi.org/10.3389/fphys.2023.1201034

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brown MR, Holmes H, Rakshit K, Javeed N, Her T, Stiller A, Shull GE, Prakash YS, Romero MF, Matveyenko AV (2021) Electrogenic Na+-nHCO3- cotransporter NBCe1 is a novel regulator of pancreatic β cell function in Type 2 diabetes. J Clin Invest 131:e142365. https://doi.org/10.1172/JCI142365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown MR, Holmes H, Rakshit K, Javeed N, Her TK, Stiller AA, Sen S, Shull GE, Prakash YS, Romero MF, Matveyenko AV (2021) Electrogenic sodium bicarbonate cotransporter NBCe1 regulates pancreatic β cell function in type 2 diabetes. J Clin Investig 131:e142365. https://doi.org/10.1172/JCI142365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brungger M, Hulter HN, Krapf R (1997) Effect of chronic metabolic acidosis on the growth hormone/IGF-1 endocrine axis: new cause of growth hormone insensitivity in humans. Kidney Int 51:216–221. https://doi.org/10.1038/ki.1997.26

    Article  CAS  PubMed  Google Scholar 

  27. Burette AC, Weinberg RJ, Sassani P, Abuladze N, Kao L, Kurtz I (2012) The sodium-driven chloride/bicarbonate exchanger in presynaptic terminals. J Comp Neurol 520:1481–1492. https://doi.org/10.1002/cne.22806

    Article  CAS  PubMed  Google Scholar 

  28. Cappellesso F, Orban MP, Shirgaonkar N, Berardi E, Serneels J, Neveu MA, Di Molfetta D, Piccapane F, Caroppo R, Debellis L, Ostyn T, Joudiou N, Mignion L, Richiardone E, Jordan BF, Gallez B, Corbet C, Roskams T, DasGupta R, Tejpar S, Di Matteo M, Taverna D, Reshkin SJ, Topal B, Virga F, Mazzone M (2022) Targeting the bicarbonate transporter SLC4A4 overcomes immunosuppression and immunotherapy resistance in pancreatic cancer. Nat Cancer 3:1464–1483. https://doi.org/10.1038/s43018-022-00470-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carey RM, Schoeffel CD, Gildea JJ, Jones JE, McGrath HE, Gordon LN, Park MJ, Sobota RS, Underwood PC, Williams J, Sun B, Raby B, Lasky-Su J, Hopkins PN, Adler GK, Williams SM, Jose PA, Felder RA (2012) Salt sensitivity of blood pressure is associated with polymorphisms in the sodium-bicarbonate cotransporter. Hypertension 60:1359–1366. https://doi.org/10.1161/HYPERTENSIONAHA.112.196071

    Article  CAS  PubMed  Google Scholar 

  30. Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11:50–61. https://doi.org/10.1038/nrm2820

    Article  CAS  PubMed  Google Scholar 

  31. Ch’en FF, Villafuerte FC, Swietach P, Cobden PM, Vaughan-Jones RD (2008) S0859, an N-cyanosulphonamide inhibitor of sodium-bicarbonate cotransport in the heart. Br J Pharmacol 153:972–982. https://doi.org/10.1038/sj.bjp.0707667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chang M-H, Chen A-P, Romero MF (2014) NBCe1A dimer assemble visualized by bimolecular fluorescence complementation (BiFC). Am J Physiol Renal Physiol 306:F672-680. https://doi.org/10.1152/ajprenal.00284.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chang M-H, DiPiero JM, Sönnichsen FD, Romero MF (2008) Entry to “HCO3 tunnel” revealed by human mutation and structural model. J Biol Chem 283:18402–18410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang M-H, Plata C, Kurita Y, Kato A, Hirose S, Romero MF (2012) Euryhaline pufferfish NBCe1 differs from non-marine species NBCe1 physiology. Am J Physiol Cell Physiol 302:C1083-1095. https://doi.org/10.1152/ajpcell.00233.2011

    Article  CAS  PubMed  Google Scholar 

  35. Chen LM, Haddad GG, Boron WF (2008) Effects of chronic continuous hypoxia on the expression of SLC4A8 (NDCBE) in neonatal versus adult mouse brain. Brain Res 1238:85–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen LM, Kelly ML, Parker MD, Bouyer P, Gill HS, Felie JM, Davis BA, Boron WF (2008) Expression and localization of Na-driven Cl-HCO(3)(-) exchanger (SLC4A8) in rodent CNS. Neuroscience 153:162–174

    Article  CAS  PubMed  Google Scholar 

  37. Chen W, Zhong R, Ming J, Zou L, Zhu B, Lu X, Ke J, Zhang Y, Liu L, Miao X, Huang T (2012) The SLC4A7 variant rs4973768 is associated with breast cancer risk: evidence from a case-control study and a meta-analysis. Breast Cancer Res Treat 136:847–857. https://doi.org/10.1007/s10549-012-2309-9

    Article  CAS  PubMed  Google Scholar 

  38. Chen X, Chen J, Feng Y, Guan W (2020) Prognostic value of SLC4A4 and its correlation with immune infiltration in colon adenocarcinoma. Med Sci Monit 26:e925016. https://doi.org/10.12659/MSM.925016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Choi I, Aalkjaer C, Boulpaep EL, Boron WF (2000) An electroneutral sodium/bicarbonate cotransporter NBCn1 and associated sodium channel. Nature 405:571–575

    Article  CAS  PubMed  Google Scholar 

  40. Christensen HL, Barbuskaite D, Rojek A, Malte H, Christensen IB, Fuchtbauer AC, Fuchtbauer EM, Wang T, Praetorius J, Damkier HH (2018) The choroid plexus sodium-bicarbonate cotransporter NBCe2 regulates mouse cerebrospinal fluid pH. J Physiol 596:4709–4728. https://doi.org/10.1113/JP275489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ciocci Pardo A, Gonzalez Arbelaez LF, Fantinelli JC, Aiello EA, Mosca SM (2019) Calcineurin/P38MAPK/HSP27-dependent pathways are involved in the attenuation of postischemic mitochondrial injury afforded by sodium bicarbonate co-transporter (NBCe1) inhibition. Biochem Pharmacol 161:26–36. https://doi.org/10.1016/j.bcp.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  42. Collin GB, Shi L, Yu M, Akturk N, Charette JR, Hyde LF, Weatherly SM, Pera MF, Naggert JK, Peachey NS, Nishina PM, Krebs MP (2022) A splicing mutation in Slc4a5 results in retinal detachment and retinal pigment epithelium dysfunction. Int J Mol Sci 23. https://doi.org/10.3390/ijms23042220

  43. Colmenares-Aguilar M-G, Mazzone A, Eisenman S, Strege P, Bernard C, Holmes H, Romero M, Farrugia G, Gibbons S (2021) Expression of the regulated isoform of the electrogenic Na+/HCO3- cotransporter, NBCe1, is enriched in pacemaker interstitial cells of Cajal. Am J Physiol-GI & Liver Physiology 320:G93–G107. https://doi.org/10.1152/ajpgi.00255.2020

    Article  CAS  Google Scholar 

  44. Damkier HH, Nielsen S, Praetorius J (2007) Molecular expression of SLC4 derived Na+ dependent anion transporters in selected human tissues. Am J Physiol Regul Integr Comp Physiol

  45. Danielsen AA, Parker MD, Lee S, Boron WF, Aalkjaer C, Boedtkjer E (2013) Splice cassette II of Na+, HCO3(-) cotransporter NBCn1 (slc4a7) interacts with calcineurin A: implications for transporter activity and intracellular pH control during rat artery contractions. J Biol Chem 288:8146–8155. https://doi.org/10.1074/jbc.M113.455386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deda G, Ekim M, Guven A, Karagol U, Tumer N (2001) Hypopotassemic paralysis: a rare presentation of proximal renal tubular acidosis. J Child Neurol 16:770–771

    Article  CAS  PubMed  Google Scholar 

  47. Demirci FY, Chang M-H, Mah TS, Romero MF, Gorin MB (2006) Proximal renal tubular acidosis and ocular pathology: L522P, a novel missense mutation in the gene (SLC4A4) for sodium bicarbonate cotransporter protein (NBCe1). Mol Vis 12:324–330

    CAS  PubMed  Google Scholar 

  48. Di Mattia RA, Diaz-Zegarra LA, Blanco PG, Valverde CA, Gonano LA, Jaquenod De Giusti C, Portiansky EL, Vila-Petroff MG, Aiello EA, Orlowski A (2023) The specific inhibition of the cardiac electrogenic sodium/bicarbonate cotransporter leads to cardiac hypertrophy. Life Sci 312:121219. https://doi.org/10.1016/j.lfs.2022.121219

    Article  CAS  PubMed  Google Scholar 

  49. Di Mattia RA, Diaz Zegarra LA, Valverde CA, Blanco PG, Jaquenod De Giusti C, Portiansky EL, Aiello EA, Orlowski A (2022) In vivo overexpression of electrogenic sodium/bicarbonate cotransporter (NBCe1) by AAV9 modifies the cardiac action potential and the QT interval in mice. Front Cardiovasc Med 9:862118. https://doi.org/10.3389/fcvm.2022.862118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dietrich CJ, Morad M (2010) Synaptic acidification enhances GABAA signaling. J Neurosci 30:16044–16052. https://doi.org/10.1523/JNEUROSCI.6364-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dinour D, Chang M-H, Satoh J-I, Smith BL, Angle N, Knecht A, Serban I, Holtzman EJ, Romero MF (2004) A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma through ion transport defects. J Biol Chem 279:52238–52246

    Article  CAS  PubMed  Google Scholar 

  52. Dinour D, Mini S, Polak-Charcon S, Lotan D, Holtzman EJ (2004) Progressive nephropathy associated with mitochondrial tRNA gene mutation. Clin Nephrol 62:149–154

    Article  CAS  PubMed  Google Scholar 

  53. Dolensek J, Rupnik MS, Stozer A (2015) Structural similarities and differences between the human and the mouse pancreas. Islets 7:e1024405. https://doi.org/10.1080/19382014.2015.1024405

    Article  PubMed  PubMed Central  Google Scholar 

  54. Douglas RM, Schmitt BM, Xia Y, Bevensee MO, Biemesderfer D, Boron WF, Haddad GG (2001) Sodium-hydrogen exchangers and sodium-bicarbonate co-transporters: ontogeny of protein expression in the rat brain. Neuroscience 102:217–228

    Article  CAS  PubMed  Google Scholar 

  55. Drew D, Boudker O (2016) Shared molecular mechanisms of membrane transporters. Annu Rev Biochem 85:543–572. https://doi.org/10.1146/annurev-biochem-060815-014520

    Article  CAS  PubMed  Google Scholar 

  56. Ducoudret O, Diakov A, Muller-Berger S, Romero MF, Fromter E (2001) The renal Na-HCO3-cotransporter expressed in Xenopus laevis oocytes: inhibition by tenidap and benzamil and effect of temperature on transport rate and stoichiometry. Pflugers Arch 442:709–717. https://doi.org/10.1007/s004240100594

    Article  CAS  PubMed  Google Scholar 

  57. Dulla CG, Dobelis P, Pearson T, Frenguelli BG, Staley KJ, Masino SA (2005) Adenosine and ATP link PCO2 to cortical excitability via pH. Neuron 48:1011–1023. https://doi.org/10.1016/j.neuron.2005.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ellison DH, Loffing J (2009) Thiazide effects and adverse effects: insights from molecular genetics. Hypertension 54:196–202. https://doi.org/10.1161/HYPERTENSIONAHA.109.129171

    Article  CAS  PubMed  Google Scholar 

  59. Espiritu DJ, Bernardo AA, Arruda JA (2006) The role of the NH2 and the COOH termini in targeting, stability and activity of sodium bicarbonate cotransporter 1 (NBC1). Am J Physiol Renal Physiol

  60. Fang L, Lee HW, Chen C, Harris AN, Romero MF, Verlander JW, Weiner ID (2018) Expression of the B splice variant of NBCe1 (SLC4A4) in the mouse kidney. Am J Physiol Renal Physiol 315:F417–F428. https://doi.org/10.1152/ajprenal.00515.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fantinelli JC, Orlowski A, Aiello EA, Mosca SM (2014) The electrogenic cardiac sodium bicarbonate co-transporter (NBCe1) contributes to the reperfusion injury. Cardiovasc Pathol 23:224–230. https://doi.org/10.1016/j.carpath.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  62. Felder RA, Jose PA, Xu P, Gildea JJ (2016) The renal sodium bicarbonate cotransporter NBCe2: is it a major contributor to sodium and pH homeostasis? Curr Hypertens Rep 18:71. https://doi.org/10.1007/s11906-016-0679-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fu Z, R. Gilbert E, Liu D (2013) Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Current Diabetes Reviews 9:25-53. https://doi.org/10.2174/157339913804143225

  64. Gao X, Yang J (2020) Identification of genes related to clinicopathological characteristics and prognosis of patients with colorectal cancer. DNA Cell Biol 39:690–699. https://doi.org/10.1089/dna.2019.5088

    Article  CAS  PubMed  Google Scholar 

  65. Gerber JM, Gucwa JL, Esopi D, Gurel M, Haffner MC, Vala M, Nelson WG, Jones RJ, Yegnasubramanian S (2013) Genome-wide comparison of the transcriptomes of highly enriched normal and chronic myeloid leukemia stem and progenitor cell populations. Oncotarget 4:715–728

    Article  PubMed  PubMed Central  Google Scholar 

  66. Giffard RG, Lee YS, Ouyang YB, Murphy SL, Monyer H (2003) Two variants of the rat brain sodium-driven chloride bicarbonate exchanger (NCBE): developmental expression and addition of a PDZ motif. Eur J Neurosci 18:2935–2945

    Article  PubMed  Google Scholar 

  67. Gildea JJ, Xu P, Carlson JM, Gaglione RT, Bigler Wang D, Kemp BA, Reyes CM, McGrath HE, Carey RM, Jose PA, Felder RA (2015) The sodium-bicarbonate cotransporter NBCe2 (slc4a5) expressed in human renal proximal tubules shows increased apical expression under high-salt conditions. Am J Physiol Regul Integr Comp Physiol 309:R1447-1459. https://doi.org/10.1152/ajpregu.00150.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gildea JJ, Xu P, Kemp BA, Carlson JM, Tran HT, Bigler Wang D, Langouet-Astrie CJ, McGrath HE, Carey RM, Jose PA, Felder RA (2018) Sodium bicarbonate cotransporter NBCe2 gene variants increase sodium and bicarbonate transport in human renal proximal tubule cells. PLoS ONE 13:e0189464. https://doi.org/10.1371/journal.pone.0189464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gomez-Rueda H, Palacios-Corona R, Gutierrez-Hermosillo H, Trevino V (2016) A robust biomarker of differential correlations improves the diagnosis of cytologically indeterminate thyroid cancers. Int J Mol Med 37:1355–1362. https://doi.org/10.3892/ijmm.2016.2534

    Article  CAS  PubMed  Google Scholar 

  70. Gorbatenko A, Olesen CW, Boedtkjer E, Pedersen SF (2014) Regulation and roles of bicarbonate transporters in cancer. Front Physiol 5:130. https://doi.org/10.3389/fphys.2014.00130

    Article  PubMed  PubMed Central  Google Scholar 

  71. Grichtchenko II II, Choi II, Zhong X, Bray-Ward P, Russell JM, Boron WF (2001) Cloning, characterization and chromosomal mapping of a human electroneutral Na+- driven Cl-HCO3 exchanger. J Biol Chem 276:8358–8363

    Article  CAS  PubMed  Google Scholar 

  72. Groger N, Vitzthum H, Frohlich H, Kruger M, Ehmke H, Braun T, Boettger T (2012) Targeted mutation of SLC4A5 induces arterial hypertension and renal metabolic acidosis. Hum Mol Genet 21:1025–1036. https://doi.org/10.1093/hmg/ddr533

    Article  CAS  PubMed  Google Scholar 

  73. Guo YM, Liu Y, Liu M, Wang JL, Xie ZD, Chen KJ, Wang DK, Occhipinti R, Boron WF, Chen LM (2017) Na(+)/HCO3(-) cotransporter NBCn2 mediates HCO3(-) reclamation in the apical membrane of renal proximal tubules. J Am Soc Nephrol 28:2409–2419. https://doi.org/10.1681/ASN.2016080930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gurnett CA, Veile R, Zempel J, Blackburn L, Lovett M, Bowcock A (2008) Disruption of sodium bicarbonate transporter SLC4A10 in a patient with complex partial epilepsy and mental retardation. Arch Neurol 65:550–553. https://doi.org/10.1001/archneur.65.4.550

    Article  PubMed  Google Scholar 

  75. Hamm LL, Nakhoul N, Hering-Smith KS (2015) Acid-base homeostasis. Clin J Am Soc Nephrol 10:2232–2242. https://doi.org/10.2215/CJN.07400715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hansell P, Welch WJ, Blantz RC, Palm F (2013) Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin Exp Pharmacol Physiol 40:123–137. https://doi.org/10.1111/1440-1681.12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Haque SK, Ariceta G, Batlle D (2012) Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant 27:4273–4287. https://doi.org/10.1093/ndt/gfs493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Horita S, Yamada H, Inatomi J, Moriyama N, Sekine T, Igarashi T, Endo Y, Dasouki M, Ekim M, Al-Gazali L, Shimadzu M, Seki G, Fujita T (2005) Functional analysis of NBC1 mutants associated with proximal renal tubular acidosis and ocular abnormalities. J Am Soc Nephrol 16:2270–2278

    Article  CAS  PubMed  Google Scholar 

  79. Huynh KW, Jiang J, Abuladze N, Tsirulnikov K, Kao L, Shao X, Newman D, Azimov R, Pushkin A, Zhou ZH, Kurtz I (2018) CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1. Nat Commun 9:900. https://doi.org/10.1038/s41467-018-03271-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hwang S, Shin DM, Hong JH (2020) Protective role of IRBIT on sodium bicarbonate cotransporter-n1 for migratory cancer cells. Pharmaceutics 12. https://doi.org/10.3390/pharmaceutics12090816

  81. Igarashi T, Inatomi J, Sekine T, Cha SH, Kanai Y, Kunimi M, Tsukamoto K, Satoh H, Shimadzu M, Tozawa F, Mori T, Shiobara M, Seki G, Endou H (1999) Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nat Genet 23:264–266

    Article  CAS  PubMed  Google Scholar 

  82. Igarashi T, Inatomi J, Sekine T, Seki G, Shimadzu M, Tozawa F, Takeshima Y, Takumi T, Takahashi T, Yoshikawa N, Nakamura H, Endou H (2001) Novel nonsense mutation in the Na+/HCO3- cotransporter gene (SLC4A4) in a patient with permanent isolated proximal renal tubular acidosis and bilateral glaucoma. J Am Soc Nephrol 12:713–718

    Article  CAS  PubMed  Google Scholar 

  83. Illek B, Yankaskas JR, Machen TE (1997) cAMP and genistein stimulate HCO3- conductance through CFTR in human airway epithelia. Am J Physiol-Lung Cell Mol Physiol 272:L752–L761. https://doi.org/10.1152/ajplung.1997.272.4.L752

    Article  CAS  Google Scholar 

  84. Inatomi J, Horita S, Braverman N, Sekine T, Yamada H, Suzuki Y, Kawahara K, Moriyama N, Kudo A, Kawakami H, Shimadzu M, Endou H, Fujita T, Seki G, Igarashi T (2004) Mutational and functional analysis of SLC4A4 in a patient with proximal renal tubular acidosis. Pflugers Arch 448:438–444

    Article  CAS  PubMed  Google Scholar 

  85. Jacobs S, Ruusuvuori E, Sipila ST, Haapanen A, Damkier HH, Kurth I, Hentschke M, Schweizer M, Rudhard Y, Laatikainen LM, Tyynela J, Praetorius J, Voipio J, Hubner CA (2008) Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc Natl Acad Sci U S A 105:311–316

    Article  CAS  PubMed  Google Scholar 

  86. Ji M, Ryu HJ, Baek HM, Shin DM, Hong JH (2022) Dynamic synovial fibroblasts are modulated by NBCn1 as a potential target in rheumatoid arthritis. Exp Mol Med 54:503–517. https://doi.org/10.1038/s12276-022-00756-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ji M, Ryu HJ, Hong JH (2021) Signalling and putative therapeutic molecules on the regulation of synoviocyte signalling in rheumatoid arthritis. Bone Joint Res 10:285–297. https://doi.org/10.1302/2046-3758.104.BJR-2020-0331.R1

    Article  PubMed  PubMed Central  Google Scholar 

  88. Josephsen K, Praetorius J, Frische S, Gawenis LR, Kwon TH, Agre P, Nielsen S, Fejerskov O (2009) Targeted disruption of the Cl-/HCO3- exchanger Ae2 results in osteopetrosis in mice. Proc Natl Acad Sci U S A 106:1638–1641. https://doi.org/10.1073/pnas.0811682106

    Article  PubMed  PubMed Central  Google Scholar 

  89. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kalervo Väänänen H, Salo J, Lehenkari P (1996) Mechanism of osteoclast-mediated bone resorption. J Bone Miner Metab 14:187–192. https://doi.org/10.1007/bf01763818

    Article  Google Scholar 

  91. Kao L, Kurtz LM, Shao X, Papadopoulos MC, Liu L, Bok D, Nusinowitz S, Chen B, Stella SL, Andre M, Weinreb J, Luong SS, Piri N, Kwong JM, Newman D, Kurtz I (2011) Severe neurologic impairment in mice with targeted disruption of the electrogenic sodium bicarbonate cotransporter NBCe2 (Slc4a5 gene). J Biol Chem 286:32563–32574. https://doi.org/10.1074/jbc.M111.249961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kato A, Kimura Y, Kurita Y, Chang M-H, Kasai K, Fujiwara T, Hirata T, Doi H, Hirose S, Romero MF (2023) Seawater fish use an electrogenic boric acid transporter, Slc4a11A, for boric acid excretion by the kidney J Biol Chem 299:102740. https://doi.org/10.1016/j.jbc.2022.102740

  93. Kato A, Romero MF (2011) Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol 73:261–281. https://doi.org/10.1146/annurev-physiol-012110-142244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Khandoudi N, Albadine J, Robert P, Krief S, Berrebi-Bertrand I, Martin X, Bevensee MO, Boron WF, Bril A (2001) Inhibition of the cardiac electrogenic sodium bicarbonate cotransporter reduces ischemic injury. Cardiovasc Res 52:387–396

    Article  CAS  PubMed  Google Scholar 

  95. Ko SB, Luo X, Hager H, Rojek A, Choi JY, Licht C, Suzuki M, Muallem S, Nielsen S, Ishibashi K (2002) AE4 is a DIDS-sensitive Cl-/HCO3- exchanger in the basolateral membrane of the renal CCD and the SMG duct. Am J Physiol Cell Physiol 283:C1206-1218

    Article  CAS  PubMed  Google Scholar 

  96. Kumar A, Bhattacharjee S, Prakash DR, Sadanand CS (2007) Genetic analysis of two Indian families affected with congenital hereditary endothelial dystrophy: two novel mutations in SLC4A11. Mol Vis 13:39–46

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34:1812–1819. https://doi.org/10.1093/molbev/msx116

    Article  CAS  PubMed  Google Scholar 

  98. Kurita Y, Nakada T, Kato A, Mistry AC, Chang M-H, Romero MF, Hirose S (2008) Identification of intestinal bicarbonate transporters involved in formation of carbonate precipitates to stimulate water absorption in marine teleost fish. Am J Physiol - Comp & Reg Physiol 284:R1402-1412

    Article  Google Scholar 

  99. Kurtz I, Zhu Q (2013) Proximal renal tubular acidosis mediated by mutations in NBCe1-A: unraveling the transporter’s structure-functional properties. Front Physiol 4:350. https://doi.org/10.3389/fphys.2013.00350

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kurtz I, Zhu Q (2013) Structure, function, and regulation of the SLC4 NBCe1 transporter and its role in causing proximal renal tubular acidosis. Curr Opin Nephrol Hypertens 22:572–583. https://doi.org/10.1097/MNH.0b013e328363ff43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kwon TH, Fulton C, Wang W, Kurtz I, Frokiaer J, Aalkjaer C, Nielsen S (2002) Chronic metabolic acidosis upregulates rat kidney Na-HCO3 cotransporters NBCn1 and NBC3 but not NBC1. Am J Physiol Renal Physiol 282:F341-351

    Article  PubMed  Google Scholar 

  102. Lee HJ, Park HJ, Lee S, Kim YH, Choi I (2011) The sodium-driven chloride/bicarbonate exchanger NDCBE in rat brain is upregulated by chronic metabolic acidosis. Brain Res 1377:13–20. https://doi.org/10.1016/j.brainres.2010.12.062

    Article  CAS  PubMed  Google Scholar 

  103. Lee S-K, Occhipinti R, Moss FJ, Parker MD, Grichtchenko II, Boron WF (2023) Distinguishing among HCO3−, CO3=, and H+ as substrates of proteins that appear to be “bicarbonate” transporters. J Am Soc Nephrol 34:40–54. https://doi.org/10.1681/asn.2022030289

    Article  PubMed  Google Scholar 

  104. Lee S, Axelsen TV, Andersen AP, Vahl P, Pedersen SF, Boedtkjer E (2016) Disrupting Na(+), HCO(3)(-)-cotransporter NBCn1 (Slc4a7) delays murine breast cancer development. Oncogene 35:2112–2122. https://doi.org/10.1038/onc.2015.273

    Article  CAS  PubMed  Google Scholar 

  105. Lee S, Lee HJ, Yang HS, Thornell IM, Bevensee MO, Choi I (2010) Sodium-bicarbonate cotransporter NBCn1 in the kidney medullary thick ascending limb cell line is upregulated under acidic conditions and enhances ammonium transport. Exp Physiol 95:926–937. https://doi.org/10.1113/expphysiol.2010.053967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee SK, Boron WF, Parker MD (2013) Substrate specificity of the electrogenic sodium/bicarbonate cotransporter NBCe1-A (SLC4A4, variant A) from humans and rabbits. Am J Physiol Renal Physiol 304:F883-899. https://doi.org/10.1152/ajprenal.00612.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee SK, Occhipinti R, Moss FJ, Parker MD, Grichtchenko II, Boron WF (2023) Distinguishing among HCO 3-, CO 3=, and H + as substrates of proteins that appear to be “bicarbonate” transporters. J Am Soc Nephrol 34:40–54. https://doi.org/10.1681/ASN.2022030289

    Article  PubMed  Google Scholar 

  108. Lefevre S, Knedla A, Tennie C, Kampmann A, Wunrau C, Dinser R, Korb A, Schnaker EM, Tarner IH, Robbins PD, Evans CH, Sturz H, Steinmeyer J, Gay S, Scholmerich J, Pap T, Muller-Ladner U, Neumann E (2009) Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med 15:1414–1420. https://doi.org/10.1038/nm.2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Leviel F, Hubner CA, Houillier P, Morla L, El Moghrabi S, Brideau G, Hassan H, Parker MD, Kurth I, Kougioumtzes A, Sinning A, Pech V, Riemondy KA, Miller RL, Hummler E, Shull GE, Aronson PS, Doucet A, Wall SM, Chambrey R, Eladari D (2010) The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Investig 120:1627–1635. https://doi.org/10.1172/JCI40145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li HC, Szigligeti P, Worrell RT, Matthews JB, Conforti L, Soleimani M (2005) Missense mutations in Na+:HCO3- cotransporter NBC1 show abnormal trafficking in polarized kidney cells: a basis of proximal renal tubular acidosis. Am J Physiol Renal Physiol 289:F61-71

    Article  CAS  PubMed  Google Scholar 

  111. Li JM, Lee S, Zafar R, Shin E, Choi I (2021) Sodium bicarbonate transporter NBCe1 regulates proliferation and viability of human prostate cancer cells LNCaP and PC3. Oncol Rep 46. https://doi.org/10.3892/or.2021.8080

  112. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218. https://doi.org/10.1016/j.tibs.2015.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Linsdell P, Tabcharani JA, Rommens JM, Hou Y-X, Chang X-B, Tsui L-C, Riordan JR, Hanrahan JW (1997) Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J Gen Physiol 110:355–364. https://doi.org/10.1085/jgp.110.4.355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Linser PJ, Neira Oviedo M, Hirata T, Seron TJ, Smith KE, Piermarini PM, Romero MF (2012) Slc4-like anion transporters of the larval mosquito alimentary canal. J Insect Physiol 58:551–562. https://doi.org/10.1016/j.jinsphys.2012.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lipovich L, Lynch ED, Lee MK, King MC (2001) A novel sodium bicarbonate cotransporter-like gene in an ancient duplicated region: SLC4A9 at 5q31. Genome Biol 2

  116. Liu Y, Qin X, Wang DK, Guo YM, Gill HS, Morris N, Parker MD, Chen LM, Boron WF (2013) Effects of optional structural elements, including two alternative amino termini and a new splicing cassette IV, on the function of the sodium-bicarbonate cotransporter NBCn1 (SLC4A7). J Physiol 591:4983–5004. https://doi.org/10.1113/jphysiol.2013.258673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu Y, Xu JY, Wang DK, Wang L, Chen LM (2011) Cloning and identification of two novel NBCe1 splice variants from mouse reproductive tract tissues: a comparative study of NCBT genes. Genomics 98:112–119. https://doi.org/10.1016/j.ygeno.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  118. Liu Y, Xu K, Chen LM, Sun X, Parker MD, Kelly ML, LaManna JC, Boron WF (2010) Distribution of NBCn2 (SLC4A10) splice variants in mouse brain. Neuroscience 169:951–964. https://doi.org/10.1016/j.neuroscience.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  119. Liu Z, Wang Q, Zhai G, Ke S, Yu X, Guo J (2022) SLC4A4 promotes prostate cancer progression in vivo and in vitro via AKT-mediated signalling pathway. Cancer Cell International 22. https://doi.org/10.1186/s12935-022-02546-6

  120. Lo YF, Yang SS, Seki G, Yamada H, Horita S, Yamazaki O, Fujita T, Usui T, Tsai JD, Yu IS, Lin SW, Lin SH (2011) Severe metabolic acidosis causes early lethality in NBC1 W516X knock-in mice as a model of human isolated proximal renal tubular acidosis. Kidney Int 79:730–741. https://doi.org/10.1038/ki.2010.523

    Article  CAS  PubMed  Google Scholar 

  121. Lu M, Jia M, Wang Q, Guo Y, Li C, Ren B, Qian F, Wu J (2021) The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases. Life Sci 270:119153. https://doi.org/10.1016/j.lfs.2021.119153

    Article  CAS  PubMed  Google Scholar 

  122. Majid DS, Prieto MC, Navar LG (2015) Salt-sensitive hypertension: perspectives on intrarenal mechanisms. Curr Hypertens Rev 11:38–48. https://doi.org/10.2174/1573402111666150530203858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Majumdar D, Bevensee MO (2010) Na-coupled bicarbonate transporters of the solute carrier 4 family in the nervous system: function, localization, and relevance to neurologic function. Neuroscience 171:951–972. https://doi.org/10.1016/j.neuroscience.2010.09.037

    Article  CAS  PubMed  Google Scholar 

  124. Majumdar D, Maunsbach AB, Shacka JJ, Williams JB, Berger UV, Schultz KP, Harkins LE, Boron WF, Roth KA, Bevensee MO (2008) Localization of electrogenic Na/bicarbonate cotransporter NBCe1 variants in rat brain. Neuroscience 155:818–832

    Article  CAS  PubMed  Google Scholar 

  125. McIntyre A, Hulikova A, Ledaki I, Snell C, Singleton D, Steers G, Seden P, Jones D, Bridges E, Wigfield S, Li JL, Russell A, Swietach P, Harris AL (2016) Disrupting hypoxia-induced bicarbonate transport acidifies tumor cells and suppresses tumor growth. Can Res 76:3744–3755. https://doi.org/10.1158/0008-5472.CAN-15-1862

    Article  CAS  Google Scholar 

  126. Medina AJ, Ibanez AM, Diaz-Zegarra LA, Portiansky EL, Blanco PG, Pereyra EV, de Giusti VC, Aiello EA, Yeves AM, Ennis IL (2020) Cardiac up-regulation of NBCe1 emerges as a beneficial consequence of voluntary wheel running in mice. Arch Biochem Biophys 694:108600. https://doi.org/10.1016/j.abb.2020.108600

    Article  CAS  PubMed  Google Scholar 

  127. Millar ID, Brown PD (2008) NBCe2 exhibits a 3 HCO3(-):1 Na+ stoichiometry in mouse choroid plexus epithelial cells. Biochem Biophys Res Commun 373:550–554. https://doi.org/10.1016/j.bbrc.2008.06.053

    Article  CAS  PubMed  Google Scholar 

  128. Mizrahi JD, Surana R, Valle JW, Shroff RT (2020) Pancreatic cancer. Lancet 395:2008–2020. https://doi.org/10.1016/S0140-6736(20)30974-0

    Article  CAS  PubMed  Google Scholar 

  129. Morrison CB, Shaffer KM, Araba KC, Markovetz MR, Wykoff JA, Quinney NL, Hao S, Delion MF, Flen AL, Morton LC, Liao J, Hill DB, Drumm ML, O'Neal WK, Kesimer M, Gentzsch M, Ehre C (2022) Treatment of cystic fibrosis airway cells with CFTR modulators reverses aberrant mucus properties via hydration. Eur Respir J 59. https://doi.org/10.1183/13993003.00185-2021

  130. Moss FJ, Boron WF (2020) Carbonic anhydrases enhance activity of endogenous Na-H exchangers and not the electrogenic Na/HCO3 cotransporter NBCe1-A, expressed in Xenopus oocytes. J Physiol 598:5821–5856. https://doi.org/10.1113/JP280143

    Article  CAS  PubMed  Google Scholar 

  131. Myers EJ, Marshall A, Jennings ML, Parker MD (2016) Mouse Slc4a11 expressed in Xenopus oocytes is an ideally selective H+/OH- conductance pathway that is stimulated by rises in intracellular and extracellular pH. Am J Physiol Cell Physiol 311:C945–C959. https://doi.org/10.1152/ajpcell.00259.2016

    Article  PubMed  PubMed Central  Google Scholar 

  132. Myers EJ, Yuan L, Felmlee MA, Lin YY, Jiang Y, Pei Y, Wang O, Li M, Xing XP, Marshall A, Xia WB, Parker MD (2016) A novel mutant Na+ /HCO3- cotransporter NBCe1 in a case of compound-heterozygous inheritance of proximal renal tubular acidosis. J Physiol 594:6267–6286. https://doi.org/10.1113/JP272252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Niculescu AB, Le-Niculescu H, Levey DF, Phalen PL, Dainton HL, Roseberry K, Niculescu EM, Niezer JO, Williams A, Graham DL, Jones TJ, Venugopal V, Ballew A, Yard M, Gelbart T, Kurian SM, Shekhar A, Schork NJ, Sandusky GE, Salomon DR (2017) Precision medicine for suicidality: from universality to subtypes and personalization. Mol Psychiatry 22:1250–1273. https://doi.org/10.1038/mp.2017.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ogando DG, Jalimarada SS, Zhang W, Vithana EN, Bonanno JA (2013) SLC4A11 is an EIPA-sensitive Na(+) permeable pHi regulator. Am J Physiol Cell Physiol 305:C716-727. https://doi.org/10.1152/ajpcell.00056.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Olsen JSM, Svendsen S, Berg P, Dam VS, Sorensen MV, Matchkov VV, Leipziger J, Boedtkjer E (2021) NBCn1 increases NH(4) (+) reabsorption across thick ascending limbs, the capacity for urinary NH(4) (+) excretion, and early recovery from metabolic acidosis. J Am Soc Nephrol 32:852–865. https://doi.org/10.1681/ASN.2019060613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Orlowski A, Ciancio MC, Caldiz CI, De Giusti VC, Aiello EA (2014) Reduced sarcolemmal expression and function of the NBCe1 isoform of the Na(+)-HCO(3)(-) cotransporter in hypertrophied cardiomyocytes of spontaneously hypertensive rats: role of the renin-angiotensin system. Cardiovasc Res 101:211–219. https://doi.org/10.1093/cvr/cvt255

    Article  CAS  PubMed  Google Scholar 

  137. Palmer BF, Kelepouris E, Clegg DJ (2021) Renal tubular acidosis and management strategies: a narrative review. Adv Ther 38:949–968. https://doi.org/10.1007/s12325-020-01587-5

    Article  CAS  PubMed  Google Scholar 

  138. Park M, Li Q, Shcheynikov N, Zeng W, Muallem S (2004) NaBC1 is a ubiquitous electrogenic Na(+)-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol Cell 16:331–341

    Article  CAS  PubMed  Google Scholar 

  139. Parker MD, Boron WF (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93:803–959. https://doi.org/10.1152/physrev.00023.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Parker MD, Boron WF, Tanner MJ (2002) Characterization of human ‘AE4’ as an electroneutral, sodium-dependent bicarbonate transporter. FASEB J 16:A796

    Google Scholar 

  141. Parker MD, Bouyer P, Daly CM, Boron WF (2008) Cloning and characterization of novel human SLC4A8 gene products encoding Na+-driven Cl-/HCO3(-) exchanger variants NDCBE-A, -C, and -D. Physiol Genomics 34:265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Parker MD, Musa-Aziz R, Rojas JD, Choi I, Daly CM, Boron WF (2008) Characterization of human SLC4A10 as an electroneutral Na/HCO3 cotransporter (NBCn2) with Cl- self-exchange activity. J Biol Chem 283:12777–12788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Parker MD, Ourmozdi EP, Tanner MJ (2001) Human BTR1, a new bicarbonate transporter superfamily member and human AE4 from kidney. Biochem Biophys Res Commun 282:1103–1109

    Article  CAS  PubMed  Google Scholar 

  144. Parker MD, Qin X, Williamson RC, Toye AM, Boron WF (2012) HCO(3)(-)-independent conductance with a mutant Na(+)/HCO(3)(-) cotransporter (SLC4A4) in a case of proximal renal tubular acidosis with hypokalaemic paralysis. J Physiol 590:2009–2034. https://doi.org/10.1113/jphysiol.2011.224733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Parks SK, Pouyssegur J (2015) The Na(+)/HCO3(-) Co-transporter SLC4A4 plays a role in growth and migration of colon and breast cancer cells. J Cell Physiol 230:1954–1963. https://doi.org/10.1002/jcp.24930

    Article  CAS  PubMed  Google Scholar 

  146. Pena-Munzenmayer G, Catalan MA, Kondo Y, Jaramillo Y, Liu F, Shull GE, Melvin JE (2015) Ae4 (Slc4a9) anion exchanger drives Cl- uptake-dependent fluid secretion by mouse submandibular gland acinar cells. J Biol Chem 290:10677–10688. https://doi.org/10.1074/jbc.M114.612895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pena-Munzenmayer G, George AT, Shull GE, Melvin JE, Catalan MA (2016) Ae4 (Slc4a9) is an electroneutral monovalent cation-dependent Cl-/HCO3- exchanger. J Gen Physiol 147:423–436. https://doi.org/10.1085/jgp.201611571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Piermarini PM, Choi I, Boron WF (2007) Cloning and characterization of an electrogenic Na/HCO3- cotransporter from the squid giant fiber lobe. Am J Physiol Cell Physiol 292:C2032-2045

    Article  CAS  PubMed  Google Scholar 

  149. Poulsen JH, Fischer H, Illek B, Machen TE (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 91:5340–5344. https://doi.org/10.1073/pnas.91.12.5340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pushkin A, Abuladze N, Lee I, Newman D, Hwang J, Kurtz I (1999) Cloning, tissue distribution, genomic organization, and functional characterization of NBC3, a new member of the sodium bicarbonate cotransporter family. J Biol Chem 274:16569–16575

    Article  CAS  PubMed  Google Scholar 

  151. Pushkin A, Abuladze N, Lee I, Newman D, Hwang J, Kurtz I (1999) Mapping of the human NBC3 (SLC4A7) gene to chromosome 3p22. Genomics 57:321–322

    Article  CAS  PubMed  Google Scholar 

  152. Pushkin A, Abuladze N, Newman D, Lee I, Xu G, Kurtz I (2000) Cloning, characterization and chromosomal assignment of NBC4, a new member of the sodium bicarbonate cotransporter family. Biochim Biophys Acta 1493:215–218

    Article  CAS  PubMed  Google Scholar 

  153. Riihonen R, Nielsen S, Vaananen HK, Laitala-Leinonen T, Kwon TH (2010) Degradation of hydroxyapatite in vivo and in vitro requires osteoclastic sodium-bicarbonate co-transporter NBCn1. Matrix Biol J Intl Soc Matrix Biol 29:287–294. https://doi.org/10.1016/j.matbio.2010.01.003

    Article  CAS  Google Scholar 

  154. Romero MF, Chen AP, Parker MD, Boron WF (2013) The SLC4 family of bicarbonate (HCO3-) transporters. Mol Aspects Med 34:159–182. https://doi.org/10.1016/j.mam.2012.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Romero MF, Dillon AK, Harte PJ, Sciortino CM (2000) The Drosophila ndae1 gene encodes a functional Na+ dependent Cl-HCO3 exchanger. FASEB J 14:A356

    Google Scholar 

  156. Romero MF, Fong P, Berger UV, Hediger MA, Boron WF (1998) Cloning and functional expression of rNBC, an electrogenic Na+-HCO3- cotransporter from rat kidney. Am J Physiol 274:F425-432

    CAS  PubMed  Google Scholar 

  157. Romero MF, Hediger MA, Boulpaep EL, Boron WF (1997) Expression cloning and characterization of a renal electrogenic Na+/HCO3- cotransporter. Nature 387:409–413. https://doi.org/10.1038/387409a0

    Article  CAS  PubMed  Google Scholar 

  158. Romero MF, Rossano AJ (2019) Acid-base basics. Semin Nephrol 39:316–327. https://doi.org/10.1016/j.semnephrol.2019.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ruminot I, Gutierrez R, Pena-Munzenmayer G, Anazco C, Sotelo-Hitschfeld T, Lerchundi R, Niemeyer MI, Shull GE, Barros LF (2011) NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+. J Neurosci 31:14264–14271. https://doi.org/10.1523/JNEUROSCI.2310-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Russell JM, Boron WF (1976) Role of choloride transport in regulation of intracellular pH. Nature 264:73–74. https://doi.org/10.1038/264073a0

    Article  CAS  PubMed  Google Scholar 

  161. Saint-Criq V, Delpiano L, Casement J, Onuora JC, Lin J, Gray MA (2020) Choice of differentiation media significantly impacts cell lineage and response to CFTR modulators in fully differentiated primary cultures of cystic fibrosis human airway epithelial cells. Cells 9. https://doi.org/10.3390/cells9092137

  162. Saint-Criq V, Guequen A, Philp AR, Villanueva S, Apablaza T, Fernandez-Moncada I, Mansilla A, Delpiano L, Ruminot I, Carrasco C, Gray MA, Flores CA (2022) Inhibition of the sodium-dependent HCO(3)(-) transporter SLC4A4, produces a cystic fibrosis-like airway disease phenotype. Elife 11. https://doi.org/10.7554/eLife.75871

  163. Samak M, Fatullayev J, Sabashnikov A, Zeriouh M, Schmack B, Farag M, Popov AF, Dohmen PM, Choi YH, Wahlers T, Weymann A (2016) Cardiac hypertrophy: an introduction to molecular and cellular basis. Med Sci Monit Basic Res 22:75–79. https://doi.org/10.12659/MSMBR.900437

    Article  PubMed  PubMed Central  Google Scholar 

  164. Sassani P, Pushkin A, Gross E, Gomer A, Abuladze N, Dukkipati R, Carpenito G, Kurtz I (2002) Functional characterization of NBC4: a new electrogenic sodium- bicarbonate cotransporter. Am J Physiol Cell Physiol 282:C408-416

    Article  CAS  PubMed  Google Scholar 

  165. Schmitt BM, Biemesderfer D, Boulpaep EL, Romero MF, Boron WF (1999) Immunolocalization of the electrogenic Na+/ HCO3- cotransporter in mammalian and amphibian kidney. Am J Physiol 276:F27-36

    CAS  PubMed  Google Scholar 

  166. Schwab A, Rossmann H, Klein M, Dieterich P, Gassner B, Neff C, Stock C, Seidler U (2005) Functional role of Na+-HCO3- cotransport in migration of transformed renal epithelial cells. J Physiol 568:445–458. https://doi.org/10.1113/jphysiol.2005.092957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sciortino CM, Fletcher BR, Shrode LD, Harte PJ, Romero MF (2001) NDAE1, Na+-driven anion exchanger from Drosophila, is a plasma membrane protein expressed in the nervous system and alimentary tract. FASEB J 15:A502

    Google Scholar 

  168. Sciortino CM, Romero MF (1999) Cation and voltage dependence of rat kidney, electrogenic Na+/HCO3- cotransporter, rkNBC, expressed in oocytes. Am J Physiol 277:F611-623

    CAS  PubMed  Google Scholar 

  169. Shang Z, Yu J, Sun L, Tian J, Zhu S, Zhang B, Dong Q, Jiang N, Flores-Morales A, Chang C, Niu Y (2019) LncRNA PCAT1 activates AKT and NF-kappaB signaling in castration-resistant prostate cancer by regulating the PHLPP/FKBP51/IKKalpha complex. Nucleic Acids Res 47:4211–4225. https://doi.org/10.1093/nar/gkz108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sherman T, Chernova MN, Clark JS, Jiang L, Alper SL, Nehrke K (2005) The abts and sulp families of anion transporters from Caenorhabditis elegans. Am J Physiol Cell Physiol 289:C341-351

    Article  CAS  PubMed  Google Scholar 

  171. Shirakabe K, Priori G, Yamada H, Ando H, Horita S, Fujita T, Fujimoto I, Mizutani A, Seki G, Mikoshiba K (2006) IRBIT, an inositol 1,4,5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type Na+/HCO3- cotransporter 1 (pNBC1). Proc Natl Acad Sci U S A 103:9542–9547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  173. Sinning A, Liebmann L, Hubner CA (2015) Disruption of Slc4a10 augments neuronal excitability and modulates synaptic short-term plasticity. Front Cell Neurosci 9:223. https://doi.org/10.3389/fncel.2015.00223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sinning A, Radionov N, Trepiccione F, Lopez-Cayuqueo KI, Jayat M, Baron S, Corniere N, Alexander RT, Hadchouel J, Eladari D, Hubner CA, Chambrey R (2017) Double knockout of the Na+-driven Cl-/HCO3- exchanger and Na+/Cl- cotransporter induces hypokalemia and volume depletion. J Am Soc Nephrol 28:130–139. https://doi.org/10.1681/ASN.2015070734

    Article  CAS  PubMed  Google Scholar 

  175. Smith JJ, Welsh MJ (1992) cAMP stimulates bicarbonate secretion across normal, but not cystic fibrosis airway epithelia. J Clin Invest 89:1148–1153. https://doi.org/10.1172/jci115696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Soleimani M (2013) SLC26 Cl-/HCO3- exchangers in the kidney: roles in health and disease. Kidney Int 84:657–666. https://doi.org/10.1038/ki.2013.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Soleimani M, Burnham CE (2000) Physiologic and molecular aspects of the Na+:HCO3- cotransporter in health and disease processes. Kidney Int 57:371–384

    Article  CAS  PubMed  Google Scholar 

  178. Soleimani M, Rastegar A (2016) Pathophysiology of renal tubular acidosis: core curriculum 2016. Am J Kidney Dis 68:488–498. https://doi.org/10.1053/j.ajkd.2016.03.422

    Article  PubMed  Google Scholar 

  179. Sussman CR, Zhao J, Plata C, Daly JLC, Angle N, DiPiero J, Drummond IA, Liang JO, Boron WF, Romero MF, Chang M-H (2009) Cloning, localization and functional expression of the electrogenic Na+ bicarbonate cotransporter (NBCe1) from zebrafish. Am J Physiol - Cell Physiol 297:C865–C875. https://doi.org/10.1152/ajpcell.00679.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Suzuki M, Vaisbich MH, Yamada H, Horita S, Li Y, Sekine T, Moriyama N, Igarashi T, Endo Y, Cardoso TP, de Sa LC, Koch VH, Seki G, Fujita T (2008) Functional analysis of a novel missense NBC1 mutation and of other mutations causing proximal renal tubular acidosis. Pflugers Arch 455:583–593

    Article  CAS  PubMed  Google Scholar 

  181. Suzuki M, Van Paesschen W, Stalmans I, Horita S, Yamada H, Bergmans BA, Legius E, Riant F, De Jonghe P, Li Y, Sekine T, Igarashi T, Fujimoto I, Mikoshiba K, Shimadzu M, Shiohara M, Braverman N, Al-Gazali L, Fujita T, Seki G (2010) Defective membrane expression of the Na(+)-HCO(3)(-) cotransporter NBCe1 is associated with familial migraine. Proc Natl Acad Sci USA 107:15963–15968. https://doi.org/10.1073/pnas.1008705107

    Article  PubMed  PubMed Central  Google Scholar 

  182. Swietach P, Boedtkjer E, Pedersen SF (2023) How protons pave the way to aggressive cancers. Nat Rev Cancer 23:825–841. https://doi.org/10.1038/s41568-023-00628-9

    Article  CAS  PubMed  Google Scholar 

  183. Taylor JY, Wu CY, Darling D, Sun YV, Kardia SLR, Jackson JS (2012) Gene-environment effects of SLC4A5 and skin color on blood pressure among African American women.pdf. Ethnicity and Disease

  184. Theparambil SM, Hosford PS, Ruminot I, Kopach O, Reynolds JR, Sandoval PY, Rusakov DA, Barros LF, Gourine AV (2020) Astrocytes regulate brain extracellular pH via a neuronal activity-dependent bicarbonate shuttle. Nat Commun 11:5073. https://doi.org/10.1038/s41467-020-18756-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Theparambil SM, Ruminot I, Schneider HP, Shull GE, Deitmer JW (2014) The electrogenic sodium bicarbonate cotransporter NBCe1 is a high-affinity bicarbonate carrier in cortical astrocytes. J Neurosci official J Soc Neurosci 34:1148–1157. https://doi.org/10.1523/JNEUROSCI.2377-13.2014

    Article  CAS  Google Scholar 

  186. Thornell IM, Bevensee MO (2015) Regulators of Slc4 bicarbonate transporter activity. Frontiers in Physiology 6. https://doi.org/10.3389/fphys.2015.00166

  187. Toye AM, Parker MD, Daly CM, Lu J, Virkki LV, Pelletier MF, Boron WF (2006) The human NBCe1-A Mutant R881C, associated with proximal renal tubular acidosis, retains function but is mistargeted in polarized renal epithelia. Am J Physiol Cell Physiol 291:C788-801

    Article  CAS  PubMed  Google Scholar 

  188. Tsuganezawa H, Kobayashi K, Iyori M, Araki T, Koizumi A, Watanabe S-I, Kaneko A, Fukao T, Monkawa T, Yoshida T, Kim DK, Kanai Y, Endou H, Hayashi M, Saruta T (2001) A new member of the HCO3- transporter superfamily is an apical anion exchanger of b -intercalated cells in the kidney. J Biol Chem 276:8180–8189

    Article  CAS  PubMed  Google Scholar 

  189. Vairamani K, Prasad V, Wang Y, Huang W, Chen Y, Medvedovic M, Lorenz JN, Shull GE (2018) NBCe1 Na(+)-HCO3(-) cotransporter ablation causes reduced apoptosis following cardiac ischemia-reperfusion injury in vivo. World J Cardiol 10:97–109. https://doi.org/10.4330/wjc.v10.i9.97

    Article  PubMed  PubMed Central  Google Scholar 

  190. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Zidek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439–D444. https://doi.org/10.1093/nar/gkab1061

    Article  CAS  PubMed  Google Scholar 

  191. Vaughan-Jones RD, Spitzer KW, Swietach P (2009) Intracellular pH regulation in heart. J Mol Cell Cardiol 46:318–331. https://doi.org/10.1016/j.yjmcc.2008.10.024

    Article  CAS  PubMed  Google Scholar 

  192. Virkki LV, Choi I, Davis BA, Boron WF (2003) Cloning of a Na+-driven Cl/HCO3 exchanger from squid giant fiber lobe. Am J Physiol Cell Physiol 285:C771-780

    Article  CAS  PubMed  Google Scholar 

  193. Virkki LV, Wilson DA, Vaughan-Jones RD, Boron WF (2002) Functional characterization of human NBC4 as an electrogenic Na/HCO3 cotransporter (NBCe2). Am J Physiol Cell Physiol 282:C1278-1289

    Article  CAS  PubMed  Google Scholar 

  194. Vithana EN, Morgan P, Sundaresan P, Ebenezer ND, Tan DT, Mohamed MD, Anand S, Khine KO, Venkataraman D, Yong VH, Salto-Tellez M, Venkatraman A, Guo K, Hemadevi B, Srinivasan M, Prajna V, Khine M, Casey JR, Inglehearn CF, Aung T (2006) Mutations in sodium-borate cotransporter SLC4A11 cause recessive congenital hereditary endothelial dystrophy (CHED2). Nat Genet 38:755–757

    Article  CAS  PubMed  Google Scholar 

  195. Vitzthum H, Koch M, Eckermann L, Svendsen SL, Berg P, Hubner CA, Wagner CA, Leipziger J, Meyer-Schwesinger C, Ehmke H (2023) The AE4 transporter mediates kidney acid-base sensing. Nat Commun 14:3051. https://doi.org/10.1038/s41467-023-38562-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wang HS, Chen Y, Vairamani K, Shull GE (2014) Critical role of bicarbonate and bicarbonate transporters in cardiac function. World J Biol Chem 5:334–345. https://doi.org/10.4331/wjbc.v5.i3.334

    Article  PubMed  PubMed Central  Google Scholar 

  197. Wang JL, Zhao L, Zhu J, Wang DK, Ren MJ, Wang M, Liu Y, Boron WF, Chen LM (2019) Expression, localization, and effect of high salt intake on electroneutral Na(+)/HCO3 (-) cotransporter NBCn2 in rat small intestine: implication in intestinal NaCl absorption. Front Physiol 10:1334. https://doi.org/10.3389/fphys.2019.01334

    Article  PubMed  PubMed Central  Google Scholar 

  198. Wang P, Song Y, Zhong H, Lin S, Zhang X, Li J, Che L, Feng B, Lin Y, Xu S, Zhuo Y, Wu D, Burrin DG, Fang Z (2019) Transcriptome profiling of placenta through pregnancy reveals dysregulation of bile acids transport and detoxification function. Int J Mol Sci 20:4099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wang W, Tsirulnikov K, Zhekova HR, Kayik G, Khan HM, Azimov R, Abuladze N, Kao L, Newman D, Noskov SY, Zhou ZH, Pushkin A, Kurtz I (2021) Cryo-EM structure of the sodium-driven chloride/bicarbonate exchanger NDCBE. Nat Commun 12:5690. https://doi.org/10.1038/s41467-021-25998-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wang YJ, Schug J, Won KJ, Liu C, Naji A, Avrahami D, Golson ML, Kaestner KH (2016) Single-cell transcriptomics of the human endocrine pancreas. Diabetes 65:3028–3038. https://doi.org/10.2337/db16-0405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677. https://doi.org/10.1038/nrc3110

    Article  CAS  PubMed  Google Scholar 

  202. Weiner ID, Verlander JW (2013) Renal ammonia metabolism and transport. Compr Physiol 3:201–220. https://doi.org/10.1002/cphy.c120010

    Article  PubMed  PubMed Central  Google Scholar 

  203. Wen D, Yuan Y, Cornelius RJ, Li H, Warner PC, Wang B, Wang-France J, Boettger T, Sansom SC (2015) Deficient acid handling with distal RTA in the NBCe2 knockout mouse. Am J Physiol Renal Physiol 309:F523-530. https://doi.org/10.1152/ajprenal.00163.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wu H, Liu S, Su P, Xie ZD, Gui TX, Zhao L, Liu Y, Chen LM (2022) Molecular insight into coordination sites for substrates and their coupling kinetics in Na(+) /HCO3 (-) cotransporter NBCe1. J Physiol:doi. https://doi.org/10.1113/JP282034.10.1113/JP282034

    Article  Google Scholar 

  205. Xiao W, Wang X, Wang T, Xing J (2019) MiR-223-3p promotes cell proliferation and metastasis by downregulating SLC4A4 in clear cell renal cell carcinoma. Aging (Albany NY) 11:615–633. https://doi.org/10.18632/aging.101763

    Article  CAS  PubMed  Google Scholar 

  206. Xu J, Barone S, Petrovic S, Wang Z, Seidler U, Riederer B, Ramaswamy K, Dudeja PK, Shull GE, Soleimani M (2003) Identification of an apical Cl-/HCO3- exchanger in gastric surface mucous and duodenal villus cells. Am J Physiol Gastrointest Liver Physiol 285:G1225-1234

    Article  CAS  PubMed  Google Scholar 

  207. Yamamoto T, Shirayama T, Sakatani T, Takahashi T, Tanaka H, Takamatsu T, Spitzer KW, Matsubara H (2007) Enhanced activity of ventricular Na+-HCO3- cotransport in pressure overload hypertrophy. Am J Physiol Heart Circ Physiol 293:H1254-1264

    Article  CAS  PubMed  Google Scholar 

  208. Yamamoto T, Swietach P, Rossini A, Loh SH, Vaughan-Jones RD, Spitzer KW (2005) Functional diversity of electrogenic Na+-HCO3- cotransport in ventricular myocytes from rat, rabbit and guinea pig. J Physiol 562:455–475. https://doi.org/10.1113/jphysiol.2004.071068

    Article  CAS  PubMed  Google Scholar 

  209. Yamazaki O, Yamada H, Suzuki M, Horita S, Shirai A, Nakamura M, Satoh N, Fujita T, Seki G (2013) Identification of dominant negative effect of L522P mutation in the electrogenic Na(+)-HCO(3)(-) cotransporter NBCe1. Pflugers Arch 465:1281–1291. https://doi.org/10.1007/s00424-013-1277-1

    Article  CAS  PubMed  Google Scholar 

  210. Yano H, Wang C, Yamashita S, Yokoyama Y, Yokoi N, Seino S (2000) Assignment(1) of the human solute carrier family 4, sodium bicarbonate cotransporter-like, member 10 gene (SLC4A10) to 2q23–>q24 by in situ hybridization and radiation hybrid mapping [In Process Citation]. Cytogenet Cell Genet 89:276–277

    Article  CAS  PubMed  Google Scholar 

  211. Zajac M, Dreano E, Edwards A, Planelles G, Sermet-Gaudelus I (2021) Airway surface liquid pH regulation in airway epithelium current understandings and gaps in knowledge. Int J Mol Sci 22. https://doi.org/10.3390/ijms22073384

  212. Zhang D, Kiyatkin A, Bolin JT, Low PS (2000) Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood 96:2925–2933

    Article  CAS  PubMed  Google Scholar 

  213. Zhang W, Ogando DG, Bonanno JA, Obukhov AG (2015) Human SLC4A11 is a novel NH3/H+ co-transporter. J Biol Chem 290:16894–16905. https://doi.org/10.1074/jbc.M114.627455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Zhang X, Tan P, Zhuang Y, Du L (2020) hsa_circRNA_001587 upregulates SLC4A4 expression to inhibit migration, invasion, and angiogenesis of pancreatic cancer cells via binding to microRNA-223. Am J Physiol Gastrointest Liver Physiol 319:G703–G717. https://doi.org/10.1152/ajpgi.00118.2020

    Article  CAS  PubMed  Google Scholar 

  215. Zhao Z, Ukidve A, Kim J, Mitragotri S (2020) Targeting strategies for tissue-specific drug delivery. Cell 181:151–167. https://doi.org/10.1016/j.cell.2020.02.001

    Article  CAS  PubMed  Google Scholar 

  216. Zhou C, Hu B, Tang Y, Chen X, Ma Z, Ding Q, Nie G (2022) Genome-wide characterization of the Triplophysa dalaica slc4 gene family and expression profiles in response to salinity changes. BMC Genomics 23:824. https://doi.org/10.1186/s12864-022-09057-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Zhou J, Xie Z, Cui P, Su Q, Zhang Y, Luo L, Li Z, Ye L, Liang H, Huang J (2020) SLC1A1, SLC16A9, and CNTN3 are potential biomarkers for the occurrence of colorectal cancer. Biomed Res Int 2020:1204605. https://doi.org/10.1155/2020/1204605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Zhu Q, Azimov R, Kao L, Newman D, Liu W, Abuladze N, Pushkin A, Kurtz I (2009) NBCe1-A transmembrane segment 1 lines the ion translocation pathway. J Biol Chem 284:8918–8929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zhu Q, Kao L, Azimov R, Abuladze N, Newman D, Pushkin A, Liu W, Chang C, Kurtz I (2010) Structural and functional characterization of the C-terminal transmembrane region of NBCe1-A. J Biol Chem

  220. Zhu Q, Kao L, Azimov R, Newman D, Liu W, Pushkin A, Abuladze N, Kurtz I (2010) Topological location and structural importance of the NBCe1-A residues mutated in proximal renal tubular acidosis. J Biol Chem 285:13416–13426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zoccola D, Ganot P, Bertucci A, Caminiti-Segonds N, Techer N, Voolstra CR, Aranda M, Tambutte E, Allemand D, Casey JR, Tambutte S (2015) Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Sci Rep 5:9983. https://doi.org/10.1038/srep09983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review in part helped fulfill degree requirements (SRH) for Mayo Clinic Graduate School of Biomedical Sciences, Biochemistry and Molecular Biology Track, Mayo Clinic, Rochester, MN. We thank Drs. Peter C. Harris, Aleksey Matveyenko, and Lisa Schimmenti for guidance and comments on the manuscript.

Funding

This work was supported by DK057061, DK101405, DK128844, DK129897, and the Mayo Foundation. The Kato laboratory work was supported by Japan Society for the Promotion of Science (grant number 21H02281) and Laboratory for Design of Social Innovation in Global Networks (DLab), Tokyo Institute of Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

S.H. and M.R wrote the main manuscript text and A.K. and Y.S. provided the details of the evolutionary components. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Michael F. Romero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Physiology of systemic and cellular pH regulation in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmberg, S.R., Sakamoto, Y., Kato, A. et al. The role of Na+-coupled bicarbonate transporters (NCBT) in health and disease. Pflugers Arch - Eur J Physiol 476, 479–503 (2024). https://doi.org/10.1007/s00424-024-02937-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-024-02937-w

Keywords

Navigation