Skip to main content

Advertisement

Log in

Intermittent hypoxia training effectively protects against cognitive decline caused by acute hypoxia exposure

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Intermittent hypoxia training (IHT) is a promising approach that has been used to induce acclimatization to hypoxia and subsequently lower the risk of developing acute mountain sickness (AMS). However, the effects of IHT on cognitive and cerebrovascular function after acute hypoxia exposure have not been characterized. In the present study, we first confirmed that the simplified IHT paradigm was effective at relieving AMS at 4300 m. Second, we found that IHT improved participants’ cognitive and neural alterations when they were exposed to hypoxia. Specifically, impaired working memory performance, decreased conflict control function, impaired cognitive control, and aggravated mental fatigue induced by acute hypoxia exposure were significantly alleviated in the IHT group. Furthermore, a reversal of brain swelling induced by acute hypoxia exposure was visualized in the IHT group using magnetic resonance imaging. An increase in cerebral blood flow (CBF) was observed in multiple brain regions of the IHT group after hypoxia exposure as compared with the control group. Based on these findings, the simplified IHT paradigm might facilitate hypoxia acclimatization, alleviate AMS symptoms, and increase CBF in multiple brain regions, thus ameliorating brain swelling and cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data were collected from volunteers and all materials are publicly available.

Abbreviations

AMS:

Acute mountain sickness

ANT:

Attentional network test

BDNF:

Brain-derived neurotrophic factor

CBF:

Cerebral blood flow

CSF:

Cerebrospinal fluid

EEG:

Electroencephalography

ER:

Error rate

ERP:

Event-related potential

GM:

Gray matter

HA:

High-altitude

IHT:

Intermittent hypoxia training

LLS:

Lake Louise Score

MRI:

Magnetic resonance imaging

RT:

Reaction time

SP:

Slow potential

WM:

White matter

References

  1. Algaze I, Phillips L, Inglis P, Lathrop G, Gadbois J, Rizzolo K, Harris NS (2020) Incidence of mild cognitive impairment with ascending altitude. High Alt Med Biol 21:184–191. https://doi.org/10.1089/ham.2019.0111

    Article  PubMed  Google Scholar 

  2. Asmaro D, Mayall J, Ferguson S (2013) Cognition at altitude: impairment in executive and memory processes under hypoxic conditions. Aviat Space Environ Med 84:1159–1165. https://doi.org/10.3357/asem.3661.2013

    Article  PubMed  Google Scholar 

  3. Babiloni C, Del Percio C, Lizio R, Infarinato F, Blin O, Bartres-Faz D, Dix SL, Bentivoglio M, Soricelli A, Bordet R, Rossini PM, Richardson JC (2014) A review of the effects of hypoxia, sleep deprivation and transcranial magnetic stimulation on EEG activity in humans: challenges for drug discovery for Alzheimer’s disease. Curr Alzheimer Res 11:501–518. https://doi.org/10.2174/1567205011666140317095623

    Article  CAS  PubMed  Google Scholar 

  4. Banich MT (2019) The stroop effect occurs at multiple points along a cascade of control: evidence from cognitive neuroscience approaches. Front Psychol 10:2164. https://doi.org/10.3389/fpsyg.2019.02164

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bartholow BD (2010) On the role of conflict and control in social cognition: event-related brain potential investigations. Psychophysiology 47:201–212. https://doi.org/10.1111/j.1469-8986.2009.00955.x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen XM, Zhang Q, Wang JY (2017) Cognitive and neuroimaging changes in healthy immigrants upon relocation to a high altitude: a panel study. Hum Brain Mapp 38:3865–3877. https://doi.org/10.1002/hbm.23635

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gangwar A, Pooja, Sharma M, Singh K, Patyal A, Bhaumik G, Bhargava K, Sethy NK (2019) Intermittent normobaric hypoxia facilitates high altitude acclimatization by curtailing hypoxia-induced inflammation and dyslipidemia. Pflugers Arch 471:949–959. https://doi.org/10.1007/s00424-019-02273-4

    Article  CAS  PubMed  Google Scholar 

  8. Gentile S, Delaroziere JC, Favre F, Sambuc R, San Marco JL (2003) Validation of the French “multidimensional fatigue inventory” (MFI 20). Eur J Canc Care 12(1):58e64

    Google Scholar 

  9. Gonzalez-Rothi EJ, Lee KZ, Dale EA, Reier PJ, Mitchell GS, Fuller DD (2015) Intermittent hypoxia and neurorehabilitation. J Appl Physiol 1985(119):1455–1465. https://doi.org/10.1152/japplphysiol.00235.2015

    Article  CAS  Google Scholar 

  10. Hamilton M (1976) Hamilton Depression Scale. In: Guy W, ed. ECDEU Assessment Manual for Psychopharmacology, Revised Edition. Rockville: National Institute of Mental Health, pp 179–192

  11. Hamilton M (1959) The assessment of anxiety status by rating. Br J Med Psychol 32:50–55

    Article  CAS  PubMed  Google Scholar 

  12. Heinrich EC, Djokic MA, Gilbertson D, Deyoung PN, Bosompra NO, Wu L, Anza-Ramirez C, Orr JE, Powell FL, Malhotra A, Simonson TS (2019) Cognitive function and mood at high altitude following acclimatization and use of supplemental oxygen and adaptive servoventilation sleep treatments. PLoS ONE 14:e0217089. https://doi.org/10.1371/journal.pone.0217089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hinault T, Larcher K, Zazubovits N, Gotman J, Dagher A (2019) Spatio-temporal patterns of cognitive control revealed with simultaneous electroencephalography and functional magnetic resonance imaging. Hum Brain Mapp 40:80–97. https://doi.org/10.1002/hbm.24356

    Article  PubMed  Google Scholar 

  14. Joyce KE, Lucas SJE, Imray CHE, Balanos GM, Wright AD (2018) Advances in the available non-biological pharmacotherapy prevention and treatment of acute mountain sickness and high altitude cerebral and pulmonary oedema. Expert Opin Pharmacother 19:1891–1902. https://doi.org/10.1080/14656566.2018.1528228

    Article  CAS  PubMed  Google Scholar 

  15. Kimura H, Ota H, Kimura Y, Takasawa S (2019) Effects of intermittent hypoxia on pulmonary vascular and systemic diseases. Int J Environ Res Public Health 16. https://doi.org/10.3390/ijerph16173101

  16. Krasney JA (1994) A neurogenic bais for acute altitude illness. Med Sci Sports Exerc 26(195–208):1994. https://doi.org/10.1249/00005768-199402000-00010

    Article  Google Scholar 

  17. Larson MJ, Clayson PE, Clawson A (2014) Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs. Int J Psychophysiol 93:283–297. https://doi.org/10.1016/j.ijpsycho.2014.06.007

    Article  PubMed  Google Scholar 

  18. Lawley JS, Alperin N, Bagci AM, Lee SH, Mullins PG, Oliver SJ, Macdonald JH (2014) Normobaric hypoxia and symptoms of acute mountain sickness: elevated brain volume and intracranial hypertension. Ann Neurol 75:890–898. https://doi.org/10.1002/ana.24171

    Article  CAS  PubMed  Google Scholar 

  19. Lawley JS, Levine BD, Williams MA, Malm J, Eklund A, Polaner DM, Subudhi AW, Hackett PH, Roach RC (2016) Cerebral spinal fluid dynamics: effect of hypoxia and implications for high-altitude illness. J Appl Physiol 1985(120):251–262. https://doi.org/10.1152/japplphysiol.00370.2015

    Article  CAS  Google Scholar 

  20. Lefferts WK, Deblois JP, White CN, Day TA, Heffernan KS, Brutsaert TD (2019) Changes in cognitive function and latent processes of decision-making during incremental ascent to high altitude. Physiol Behav 201:139–145. https://doi.org/10.1016/j.physbeh.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, Goschl F, Yang G (2020) Dissociated neural mechanisms of target and distractor processing facilitated by expectations. J Neurosci 40:1997–1999. https://doi.org/10.1523/JNEUROSCI.2562-19.2020

    Article  CAS  PubMed  Google Scholar 

  22. Lu XJ, Chen XQ, Weng J, Zhang HY, Pak DT, Luo JH, Du JZ (2009) Hippocampal spine-associated Rap-specific GTPase-activating protein induces enhancement of learning and memory in postnatally hypoxia-exposed mice. Neuroscience 162:404–414. https://doi.org/10.1016/j.neuroscience.2009.05.011

    Article  CAS  PubMed  Google Scholar 

  23. Luks A M, Swenson E R, Bartsch P (2017) Acute high-altitude sickness. Eur Respir Rev 26. https://doi.org/10.1183/16000617.0096-2016

  24. Ma H, Wang Y, Wu J, Wang B, Guo S, Luo P, Han B (2015) Long-term exposure to high altitude affects conflict control in the conflict-resolving stage. PLoS ONE 10:e0145246. https://doi.org/10.1371/journal.pone.0145246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma H, Zhang D, Li X, Ma H, Wang N, Wang Y (2019) Long-term exposure to high altitude attenuates verbal and spatial working memory: evidence from an event-related potential study. Brain Behav 9:e01256. https://doi.org/10.1002/brb3.1256

    Article  PubMed  PubMed Central  Google Scholar 

  26. Malle C, Ginon B, Bourrilhon C (2016) Brief working memory and physiological monitoring during a high-altitude expedition. High Alt Med Biol 17:359–364. https://doi.org/10.1089/ham.2016.0022

    Article  CAS  PubMed  Google Scholar 

  27. Mallet RT, Manukhina EB, Ruelas SS, Caffrey JL, Downey HF (2018) Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential. Am J Physiol Heart Circ Physiol 315:H216–H232. https://doi.org/10.1152/ajpheart.00060.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Manukhina EB, Downey HF, Shi X, Mallet RT (2016) Intermittent hypoxia training protects cerebrovascular function in Alzheimer’s disease. Exp Biol Med (Maywood) 241:1351–1363. https://doi.org/10.1177/1535370216649060

    Article  CAS  PubMed  Google Scholar 

  29. Mateika JH, El-Chami M, Shaheen D, Ivers B (2015) Intermittent hypoxia: a low-risk research tool with therapeutic value in humans. J Appl Physiol 1985(118):520–532. https://doi.org/10.1152/japplphysiol.00564.2014

    Article  CAS  Google Scholar 

  30. Mcmorris T, Hale BJ, Barwood M, Costello J, Corbett J (2017) Effect of acute hypoxia on cognition: a systematic review and meta-regression analysis. Neurosci Biobehav Rev 74:225–232. https://doi.org/10.1016/j.neubiorev.2017.01.019

    Article  PubMed  Google Scholar 

  31. McNair DM, Lorr M, Droppleman LF (1992) Revised manual for the profile of mood states. Educational and Industrial Testing Service, San Diego, CA

    Google Scholar 

  32. Navarrete-Opazo A, Mitchell GS (2014) Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol 307:R1181-1197. https://doi.org/10.1152/ajpregu.00208.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Papadelis C, Kourtidou-Papadeli C, Bamidis PD, Maglaveras N, Pappas K (2007) The effect of hypobaric hypoxia on multichannel EEG signal complexity. Clin Neurophysiol 118:31–52. https://doi.org/10.1016/j.clinph.2006.09.008

    Article  PubMed  Google Scholar 

  34. Pilmanis AA, Balldin UI, Fischer JR (2016) Cognition effects of low-grade hypoxia. Aerosp Med Hum Perform 87:596–603. https://doi.org/10.3357/AMHP.4558.2016

    Article  PubMed  Google Scholar 

  35. Posner MI, Rothbart MK (2007) Research on attention networks as a model for the integration of psychological science. Annu Rev Psychol 58:1–23. https://doi.org/10.1146/annurev.psych.58.110405.085516

    Article  PubMed  Google Scholar 

  36. Pun M, Guadagni V, Bettauer KM, Drogos LL, Aitken J, Hartmann SE, Furian M, Muralt L, Lichtblau M, Bader PR, Rawling JM, Protzner AB, Ulrich S, Bloch KE, Giesbrecht B, Poulin MJ (2018) Effects on cognitive functioning of acute, subacute and repeated exposures to high altitude. Front Physiol 9:1131. https://doi.org/10.3389/fphys.2018.01131

    Article  PubMed  PubMed Central  Google Scholar 

  37. Quindry J, Dumke C, Slivka D, Ruby B (2016) Impact of extreme exercise at high altitude on oxidative stress in humans. J Physiol 594:5093–5104. https://doi.org/10.1113/jp270651

    Article  CAS  PubMed  Google Scholar 

  38. Richards KC, O’sullivan PS, Phillips RL (2000) Measurement of sleep in critically ill patients. J Nurs Meas 8:131–144

    Article  CAS  PubMed  Google Scholar 

  39. Rimoldi SF, Rexhaj E, Duplain H, Urben S, Billieux J, Allemann Y, Romero C, Ayaviri A, Salinas C, Villena M, Scherrer U, Sartori C (2016) Acute and chronic altitude-induced cognitive dysfunction in children and adolescents. J Pediatr 169:238–243. https://doi.org/10.1016/j.jpeds.2015.10.009

    Article  PubMed  Google Scholar 

  40. Roach RC, Bärtsch P, Hackett PH, Oelz O (1993) The Lake Louise acute mountain sickness scoring system. In: Sutton JR, Houston CS, Coates G (eds) Hypoxia and Molecular Medicine. Queen City Press, Burlington, VT, pp 272–274

    Google Scholar 

  41. Sagoo RS, Hutchinson CE, Wright A, Handford C, Parsons H, Sherwood V, Wayte S, Nagaraja S, Ng’andwe E, Wilson MH, Imray CH, Birmingham Medical R, Expedition S (2017) Magnetic resonance investigation into the mechanisms involved in the development of high-altitude cerebral edema. J Cereb Blood Flow Metab 37:319–331. https://doi.org/10.1177/0271678X15625350

    Article  CAS  PubMed  Google Scholar 

  42. Saletu B, Grünberger J, Linzmayer L, Anderer P (1990) Brain protection of nicergoline against hypoxia_ EEG brain mapping and psychometry. J Neural Transmission 2:305–325. https://doi.org/10.1007/bf02252925(1990)

    Article  CAS  Google Scholar 

  43. Sridharan K, Sivaramakrishnan G (2018) Pharmacological interventions for preventing acute mountain sickness: a network meta-analysis and trial sequential analysis of randomized clinical trials. Ann Med 50:147–155. https://doi.org/10.1080/07853890.2017.1407034

    Article  CAS  PubMed  Google Scholar 

  44. Talukdar U, Hazarika SM, Gan JQ (2019) Motor imagery and mental fatigue: inter-relationship and EEG based estimation. J Comput Neurosci 46:55–76. https://doi.org/10.1007/s10827-018-0701-0

    Article  PubMed  Google Scholar 

  45. Tsai YW, Yang YR, Sun SH, Liang KC, Wang RY (2013) Post ischemia intermittent hypoxia induces hippocampal neurogenesis and synaptic alterations and alleviates long-term memory impairment. J Cereb Blood Flow Metab 33:764–773. https://doi.org/10.1038/jcbfm.2013.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Turner CE, Barker-Collo SL, Connell CJ, Gant N (2015) Acute hypoxic gas breathing severely impairs cognition and task learning in humans. Physiol Behav 142:104–110. https://doi.org/10.1016/j.physbeh.2015.02.006

    Article  CAS  PubMed  Google Scholar 

  47. Vinit S, Lovett-Barr MR, Mitchell GS (2009) Intermittent hypoxia induces functional recovery following cervical spinal injury. Respir Physiol Neurobiol 169:210–217. https://doi.org/10.1016/j.resp.2009.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang J, Ke T, Zhang X, Chen Y, Liu M, Chen J, Luo W (2013) Effects of acetazolamide on cognitive performance during high-altitude exposure. Neurotoxicol Teratol 35:28–33. https://doi.org/10.1016/j.ntt.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  49. Wang K, Li Q, Zheng Y, Wang H, Liu X (2014) Temporal and spectral profiles of stimulus-stimulus and stimulus-response conflict processing. Neuroimage 89:280–288. https://doi.org/10.1016/j.neuroimage.2013.11.045

    Article  PubMed  Google Scholar 

  50. Wille M, Gatterer H, Mairer K, Philippe M, Schwarzenbacher H, Faulhaber M, Burtscher M (2012) Short-term intermittent hypoxia reduces the severity of acute mountain sickness. Scand J Med Sci Sports 22:e79-85. https://doi.org/10.1111/j.1600-0838.2012.01499.x

    Article  CAS  PubMed  Google Scholar 

  51. Wilson MH, Imray CH (2016) The cerebral venous system and hypoxia. J Appl Physiol 1985(120):244–250. https://doi.org/10.1152/japplphysiol.00327.2015

    Article  CAS  Google Scholar 

  52. Yan X (2014) Cognitive impairments at high altitudes and adaptation. High Alt Med Biol 15:141–145. https://doi.org/10.1089/ham.2014.1009

    Article  PubMed  Google Scholar 

  53. Yaple Z, Arsalidou M (2018) N-back working memory task: meta-analysis of normative fMRI studies with children. Child Dev 89:2010–2022. https://doi.org/10.1111/cdev.13080

    Article  PubMed  Google Scholar 

  54. Zheng Y, Mei S, Yi W, Li Q, Liu X (2019) Abnormal performance monitoring but intact response inhibition in sensation seeking. Psychophysiology 56:e13373. https://doi.org/10.1111/psyp.13373

    Article  PubMed  Google Scholar 

  55. Zhu XH, Yan HC, Zhang J, Qu HD, Qiu XS, Chen L, Li SJ, Cao X, Bean JC, Chen LH, Qin XH, Liu JH, Bai XC, Mei L, Gao TM (2010) Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. J Neurosci 30:12653–12663. https://doi.org/10.1523/JNEUROSCI.6414-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhu LL, Zhao T, Li HS, Zhao H, Wu LY, Ding AS, Fan WH, Fan M (2005) Neurogenesis in the adult rat brain after intermittent hypoxia. Brain Res 1055(1–2):1–6. https://doi.org/10.1016/j.brainres.2005.04.075

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Beijing Science and Technology Commission (grant numbers: Z161100000216134 and 7204283) and the Key Program of National Nature Sciences Foundation of China (grant number: 81430044).

Author information

Authors and Affiliations

Authors

Contributions

Guangbo Zhang, Guochun Yang, and Yanzhao Zhou were responsible for completing the whole experiment, Zhengtao Cao provided hypoxic equipment, Ming Yin provided test support, Lin Ma was responsible for magnetic resonance analysis, Ming Fan provided key parameters for hypoxic training, Yong-Qi Zhao designed the research and completed statistical analysis, and Lingling Zhu provided research resources and scientific support.

Corresponding authors

Correspondence to Yong-Qi Zhao or Lingling Zhu.

Ethics declarations

Ethical approval

The study was approved by the Ethics Committee of the Beijing Institute of Basic Medical Sciences (ID: AF/SC-08/02130), which was conducted in accordance with the Helsinki Declaration for Human Studies.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yang, G., Zhou, Y. et al. Intermittent hypoxia training effectively protects against cognitive decline caused by acute hypoxia exposure. Pflugers Arch - Eur J Physiol 476, 197–210 (2024). https://doi.org/10.1007/s00424-023-02885-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-023-02885-x

Keywords

Navigation