Skip to main content
Log in

Role of cytosolic and endoplasmic reticulum Ca2+ in pancreatic beta-cells: pros and cons

  • Invited review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Pancreatic beta cells utilize Ca2+ to secrete insulin in response to glucose. The glucose-dependent increase in cytosolic Ca2+ concentration ([Ca2+]C) activates a series of insulin secretory machinery in pancreatic beta cells. Therefore, the amount of insulin secreted in response to glucose is determined in a [Ca2+]C-dependent manner, at least within a moderate range. However, the demand for insulin secretion may surpass the capability of beta cells. Abnormal elevation of [Ca2+]C levels beyond the beta-cell endurance capacity can damage them by inducing endoplasmic reticulum (ER) stress and cell death programs such as apoptosis. Therefore, while Ca2+ is essential for the insulin secretory functions of beta cells, it could affect their survival at pathologically higher levels. Because an increase in beta-cell [Ca2+]C is inevitable under certain hazardous conditions, understanding the regulatory mechanism for [Ca2+]C is important. Therefore, this review discusses beta-cell function, survival, ER stress, and apoptosis associated with intracellular and ER Ca2+ homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ATP:

Adenosine triphosphate

AMP:

Adenosine monophosphate

BiPS:

Binding immunoglobulin protein

cAMP:

Cyclic AMP

CRE:

CAMP-response element

CREB:

CAMP-response element binding protein

CRAC:

Ca2+ release–activated Ca2+

EPAC:

Exchange protein directly activated by cAMP

eIF2α:

Eukaryotic initiation factor 2α

ER:

Endoplasmic reticulum

ERAD:

ER-associated protein degradation

GDP:

Guanosine diphosphate

GTP:

Guanosine triphosphate

GEF:

Guanine nucleotide exchange factor

GLUT:

Glucose transporters

GSIS:

Glucose-stimulated insulin secretion

GPCRs:

Guanine-nucleotide-binding regulatory protein (G protein)-coupled receptors

GLP:

Glucagon-like peptide

GIP:

Glucose-dependent insulinotropic polypeptide

GRP:

Glucose-regulated protein

HOMA:

Homeostasis model assessment

HSPA:

Heat shock 70 kDa protein

Kir:

Inwardly-rectifying potassium channels

IICR:

IP3-induced Ca2+ release

IRE1:

Inositol-requiring 1

JNK:

C-Jun N-terminal kinase

KATP :

ATP-sensitive K+

KV :

Voltage-dependent K+

MA:

Malate-aspartate

PERK:

Protein kinase RNA-like ER kinase

Pyk:

Protein tyrosine kinase

PHHI:

Persistent hyperinsulinemic hypoglycemia in infants

PKA:

Protein kinase A

ROS:

Reactive oxygen species

RyR:

Ryanodine receptors

RAP:

Ras-related protein

SUR:

Sulfonylurea receptors

SERCA:

Sarco/-endoplasmic reticulum Ca2+ ATPase

SOCE:

Store-operated calcium entry

Stim:

Stromal interaction molecule

SARAF:

SOCE-associated regulatory factor

TRP:

Transient receptor potential

UPR:

Unfolded protein response

VDCC:

Voltage-dependent Ca2+ channels

WFS:

Wolfram syndrome

References

  1. Ajoolabady A, Lindholm D, Ren J, Pratico D (2022) ER stress and UPR in Alzheimer’s disease: mechanisms, pathogenesis, treatments. Cell Death Dis 13(8):706. https://doi.org/10.1038/s41419-022-05153-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ansar MM, Ansari M (2006) Nitric oxide involvement in pancreatic beta cell apoptosis by glibenclamide. Nitric Oxide 14(1):39–44. https://doi.org/10.1016/j.niox.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  3. Ashcroft FM (2005) ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 115(8):2047–2058. https://doi.org/10.1172/JCI25495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashcroft FM, Gribble FM (2000) New windows on the mechanism of action of KATP channel openers. Trends Pharmacol Sci 21(11):439–445. https://doi.org/10.1016/s0165-6147(00)01563-7

    Article  CAS  PubMed  Google Scholar 

  5. Baev AY, Vinkurov AY, Novikova IN, Dremin VV, Potapova EV, Abramov AY (2022) Interaction of mitochondrial calcium and ros in neurodegeneration. Cells 11(4):706. https://doi.org/10.3390/cells11040706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ballinger SW, Shoffner JM, Hedaya EV, Trounce I, Polak MA, Koontz DA, Wallace DC (1992) Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nat Genet 1(1):11–15. https://doi.org/10.1038/ng0492-11

    Article  CAS  PubMed  Google Scholar 

  7. Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S (2017) Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab 6(9):943–957. https://doi.org/10.1016/j.molmet.2017.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cnop M, Toivonen S, Igoillo-Esteve M, Salpea P (2017) Endoplasmic reticulum stress and eIF2α phosphorylation: the achilles heel of pancreatic β-cells. Mol Metab 6(9):1024–1039. https://doi.org/10.1016/j.molmet.2017.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Collier JJ, Burke SJ, Eisenhauer ME, Lu D, Sapp RC, Frydman CJ, Campagna SR (2011) Pancreatic β-cell death in response to pro-inflammatory cytokines is distinct from genuine apoptosis. Plos One 6(7):e22485. https://doi.org/10.1371/journal.pone.0022485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Daverkausen-Fischer L, Prols F (2022) Regulation of calcium homeostasis and flux between the endoplasmic reticulum and the cytosol. J Biol Chem 298(7):102061. https://doi.org/10.1016/j.jbc.2022.102061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Denmeade SR, Isaacs JT (2005) The SERCA pump as a therapeutic target: making a “smart bomb” for prostate cancer. Cancer Biol Ther 4(1):14–22. https://doi.org/10.4161/cbt.4.1.1505

    Article  CAS  PubMed  Google Scholar 

  12. Eizirik DL, Cnop M (2010) ER stress in pancreatic beta cells: the thin red line between adaption and failure. Sci Signal 3:pe7. https://doi.org/10.1126/scisignal.3110pe7

    Article  CAS  PubMed  Google Scholar 

  13. Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29(1):42–61. https://doi.org/10.1210/er.2007-0015

    Article  CAS  PubMed  Google Scholar 

  14. Fonseca SG, Gromada J, Urano F (2011) Endoplasmic reticulum stress and pancreatic β-cell death. Trends Endocrinol Metab 22(7):266–274. https://doi.org/10.1016/j.tem.2011.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goodge KA, Hutton JC (2000) Translational regulation of proinsulin biosynthesis and proinsulin conversion in the pancreatic beta-cell. Semin Cell Dev Biol 11(4):235–242. https://doi.org/10.1006/scdb.2000.0172

    Article  CAS  PubMed  Google Scholar 

  16. Gwiazda KS, Yang TL, Lin Y, Johnson JD (2009) Effects of palmitate on ER and cytosolic homeostasis in beta-cells. Am J Physiol Endorinol Metab 296(4):E690-701. https://doi.org/10.1152/ajpendo.90525.2008

    Article  CAS  Google Scholar 

  17. Halls ML, Cooper DM (2011) Regulation by Ca2+ signaling pathways of adenylyl cyclases. Cold Spring Harb Perspect Biol 3(2):a004143. https://doi.org/10.1101/cshperspect.a004143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M, Kilberg MS, Sartor MA, Kaufman RJ (2013) ER stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15(5):481–490. https://doi.org/10.1038/ncb2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harraz OF, Altier C (2014) Stim1-mediated bidirectional regulation of Ca2+ entry through voltage-gated calcium channels (VFCC) and calcium-release activated channels (CRAC). Front Cell Neurosci 8:43. https://doi.org/10.3389/fncel.2014.00043

    Article  PubMed  PubMed Central  Google Scholar 

  20. Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49(11):1751–1760. https://doi.org/10.2337/diabetes.49.11.1751

    Article  CAS  PubMed  Google Scholar 

  21. Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87(4):1409–1439. https://doi.org/10.1152/physrev.00034.2006

    Article  CAS  PubMed  Google Scholar 

  22. Hou JC, Min L, Pessin JE (2009) Insulin granule biogenesis, trafficking and exocytosis. Vitam Horm 80:473–506. https://doi.org/10.1016/S0083-6729(08)00616-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Inaishi J, Saisho Y, Sato S, Kou K, Murakami R, Watanabe Y, Kitago M, Kitagawa Y, Yamada T, Itoh H (2016) Effects of obesity and diabetes on α- and β-cell mass in surgically resected human pancreas. J Clin Endocrinol Metab 101(7):2874–2882. https://doi.org/10.1210/jc.2016-1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jezek P, Jaburek M, Plecita-Hlavata L (2019) Contribution of oxidative stress and impaired biogenesis of pancreatic β-cells to type 2 diabetes. Antioxid Redox Signal 31(10):722–751. https://doi.org/10.1089/ars.2018.7656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kane C, Shepherd RM, Squires PE, Johnson PR, James RF, Milla PJ, Aynsley-Green A, Lindley KJ, Dunne MJ (1996) Loss of functional KATP channels in pancreatic beta-cells causes persistent hyperinsulinemic hypoglycemia of infancy. Nat Med 2(12):1344–1347. https://doi.org/10.1038/nm1296-1344

    Article  CAS  PubMed  Google Scholar 

  26. Kappel S, Borgstrom A, Stoklosa P, Dorr K, Peinelt C (2019) Store-operated calcium entry in disease: beyond STIM/ORAI expression levels. Semin Cell Dev Biol 94:66–73. https://doi.org/10.1016/j.semcdb.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  27. Karunakaran U, Kim HJ, Kim JY, Lee IK (2012) Guards and culprits in the endoplasmic reticulum: glucolipotoxicity and β-cell failure in type II diabetes. Exp Diabetes Res 2012:639762. https://doi.org/10.1155/2012/639762

    Article  CAS  PubMed  Google Scholar 

  28. Kataoka HU, Noguchi H (2013) ER stress and β-cell pathogenesis of type1 and type2 diabetes and islet transplantation. Cell Med 5(2–3):53–57. https://doi.org/10.3727/215517913X666512

    Article  PubMed  PubMed Central  Google Scholar 

  29. Khosravi-Far R, Esposti MD (2004) Death receptor signals to mitochondria. Cancer Biol Ther 3(11):1051–1057. https://doi.org/10.4161/cbt.3.11.1173

    Article  CAS  PubMed  Google Scholar 

  30. Kim W, Egan JM (2008) The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 60(4):470–512. https://doi.org/10.1124/pr.108.000604

    Article  CAS  PubMed  Google Scholar 

  31. Leech CA, Chepurny OG, Halz GG (2010) Epac2-dependent rap1 activation and the control of islet insulin secretion by glucagon-like peptide-1. Vitam Horm 84:279–302. https://doi.org/10.1016/B978-0-12-381517-0.00010-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leibowitz G, Glaser B, Higazi AA, Salameh M, Cerasi E, Landau H (1995) Hyperinsulinemic hypoglycemia of infancy (nesidioblastosis) in clinical remission: high incidence of diabetes mellitus and perisistent beta-cell dysfunction at long-term follow-up. J Clin Endocrinol Metab 80(2):386–392. https://doi.org/10.1210/jcem.80.2.7852494

    Article  CAS  PubMed  Google Scholar 

  33. Lenaire K, Schuit F (2012) Integrating insulin secretion and ER stress in pancreatic -cells. Nat Cell Biol 14(10):979–981. https://doi.org/10.1038/ncb2594

    Article  CAS  Google Scholar 

  34. Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model of SOCE/Icrac channels. Proc Natl Acad Sci U S A 105(8):2895–2900. https://doi.org/10.1073/pnas.0712288105

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lin JH, Walter P, Yen TS (2008) Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol 3:399–425. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lindholm D, Wootz H, Korhonon L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13(3):385–392. https://doi.org/10.1038/sj.cdd.4401778

    Article  CAS  PubMed  Google Scholar 

  37. Liu K, Tsung K, Attenello FJ (2020) Characterizing cell stress and GRP78 in glioma to enchance tumor treatment. Front Oncol 10:608911. https://doi.org/10.3389/fonc.2020.608911

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lopez JJ, Albarran L, Gomez LJ, Smani T, Salido GM (1863) Rosado JA (2016) Molecular modulators of store-operated calcium entry. Biochim Biophys Acta 8:2037–2043. https://doi.org/10.1016/j.bbamcr.2016.04.024

    Article  CAS  Google Scholar 

  39. Lopez E, Frischauf I, Jardin I, Derler I, Muik M, Cantonero C, Salido GM, Smani T, Rosado JA, Redondo PC (2019) STIM1 phosphorylation at Y316 modulates its interaction with SARAF and the activation of SOCE and ICRAC. J Cell Sci 132(10):jcs226019. https://doi.org/10.1242/jcs.226019

    Article  CAS  PubMed  Google Scholar 

  40. Lopez JJ, Jardin I, Sanchez-Collado J, Salido GM, Smani T, Rosado JA (2020) TRPC channels in the SOCE scenario. Cells 9(1):126. https://doi.org/10.3390/cells9010126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luciani DS, Gwiazda KS, Yang TL, Kalynyak TB, Bychkivska Y, Frey MH, Jeffrey KD, Sampaio AV, Underhill TM, Johnson JD (2009) Roles of IP3R and RyR Ca2+ channels in endoplasmic reticulum stress and beta-cell death. Diabetes 58(2):422–432. https://doi.org/10.2337/db07-1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma ZA, Zhao Z, Turk J (2012) Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res 2012:703538. https://doi.org/10.1155/2012/703538

    Article  CAS  PubMed  Google Scholar 

  43. Maliougina M, El Hiani Y (2023) TRPM2: bridging calcium and ROS signaling pathways-implications for human diseases. Front Physiol 14:1217828. https://doi.org/10.3389/fphys.2023.1217828

    Article  PubMed  PubMed Central  Google Scholar 

  44. Marrif HI, Al-Sunousi SI (2016) Pancreatic β-cell mass death. Front Pharmacol 7:83. https://doi.org/10.3389/fphar.2016.00083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moccia F, Fiorio Pla A, Lim D, Lodola F, Gerbino A (2023) Intracellular Ca2+ signaling: unexpected new roles for the usual suspect. Front Physiol 14:1210085. https://doi.org/10.3389/fphys.2023.1210085

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nagao M, Lagerstedt JO, Eliasson L (2022) Secretory granule exocytosis and its amplification by cAMP in pancreatic β-cells. Diabetol Int 13(3):471–479. https://doi.org/10.1007/s13340-022-00580-3

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nakamura RK, Mann LS, Lindner MD, Braithwaite J, Chen MC, Vancea A, Byrnes N, Durrant V, Reed B (2021) An experimental test of the effects of redacting grant applicant identifiers on peer review outcomes. Elife 10:e71368. https://doi.org/10.7554/eLife.71368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oh YS, Bae GD, Baek DJ, Park EY, Jun HS (2018) Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front Endocrinol (Lausanne) 9:384. https://doi.org/10.3389/fendo.2018.00384

    Article  PubMed  Google Scholar 

  49. Parekh AB (2003) Store-operated Ca2+ entry: dynamic inteplay between endoplasmic reticulum, mitochondria and plasma membrane. J physiol 547(Pt 2):333–348. https://doi.org/10.1113/jphysiol.2002.034140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Perez-Zoghbi JF, Karner C, Ito S, Shepherd M, Alrashdan Y, Sanderson MJ (2009) lon channel regulation of intracellular calcium and airway smooth muscle function. Pulm Pharmacol Ther 22(5):388–397. https://doi.org/10.1016/j.popt.2008.09.006

    Article  CAS  PubMed  Google Scholar 

  51. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27(50):6407–6418. https://doi.org/10.1038/onc.2008.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Putney JW (2011) The physiological function of store-operated calcium entry. Neurochem Res 36(7):1157–1165. https://doi.org/10.1007/s11064-010-0383-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11(4):372–380. https://doi.org/10.1038/sj.cdd.4401378

    Article  CAS  PubMed  Google Scholar 

  54. Rashid HO, Yadav RK, Kim HR, Chae HJ (2015) ER stress: autophagy induction, inhibition and selection. Autophagy 11(11):1956–1977. https://doi.org/10.1080/15548627.2015.1091141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roder PV, Wu B, Liu Y, Han W (2016) Pancreatic regulation of glucose homeostasis. Exp Mol Med 48(3):e219. https://doi.org/10.1038/emm.2016.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sabatini PV, Speckmann T, Lynn FC (2019) Friend and foe: β-cell Ca2+ signaling and the development of diabetes. Mol Metab 21:1–12. https://doi.org/10.1016/j.molmet.2018.12.007

    Article  CAS  PubMed  Google Scholar 

  57. Sano R (1833) Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 12:3460–3470. https://doi.org/10.1016/j.bbamcr.2013.06.028

    Article  CAS  Google Scholar 

  58. Seino Y, Fukushima M, Yabe D (2010) GIP and GLP-1, the two incretin hormones: similarities and differences. J Diabestes Investig 1(1–2):8–23. https://doi.org/10.1111/j.2040-1124.2010.00022.x

    Article  CAS  Google Scholar 

  59. Sha W, Hu F, Bu S (2020) Mitochondrial dysfunction and pancreatic islet β-cell failure. Exp Ther Med 20(6):266. https://doi.org/10.3892/etm.2020.9396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shyng S, Nichols CG (1997) Octameric stoichiometry of the KATP chnnel complex. J Gen Physiol 110(6):655–664. https://doi.org/10.1085/jgp.110.6.655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sneyd J, Tsaneva-Atanasova K, Reznikov V, Bai Y, Sanderson MJ, Yule DI (2006) A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. Proc Natl Acad Sci U S A 103(6):1675–1680. https://doi.org/10.1073/pnas.0506135103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stak K, Gotfredsen CF, Lundsgaard D, Hansen JB, Sturis J, Markholst H (2004) Improved beta-cell survival and reduced insulitis in a type 1 diabetic rat model after treatment with a beta-cell-selective K(ATP) channel opener. Diabetes 53(4):1089–1095. https://doi.org/10.2337/diabetes.53.4.1089

    Article  Google Scholar 

  63. Sukumaran P, Schaar A, Sun Y, Singh BB (2016) Functional role of TRP channels in modulating ER stress and autophagy. Cell Calcium 60(2):123–132. https://doi.org/10.1016/j.ceca.2016.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sukumaran P, Nascimento Da Conceicao V, Sun Y, Ahamad N, Saraiva LR, Selvaraj S, Singh BB (2021) Calcium signaling regulates autophagy and apoptosis. Cells 10(8):2125. https://doi.org/10.3390/cells10082125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tong X, Kono T, Anderson-Baucum EK, Yamamoto W, Gilon P, Lebeche D, Day RN, Shull GE, Evans-Molina C (2016) SERCA2 deficiency impairs pancreatic β-cell function in response to diet-induced obesity. Diabetes 65(10):3039–3052. https://doi.org/10.2337/db16-0084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wali JA, Masters SL, Thomas HE (2013) Linking metabolic abnormalities to apoptotic pathways in beta cells in type 2 diabetes. Cells 2(2):266–283. https://doi.org/10.3390/cells2020266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang M, Wey S, Zhang Y, Ye R, Lee AS (2009) Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal 11(9):2307–2316. https://doi.org/10.1089/ars.2009.2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamade T, Ishihara H, Tamura A, Takahashi R, Yamaguchi S, Takei D, Tokita A, Satake C, Tashiro F, Katagiri H, Aburatni H, Miyazaki J, Oka Y (2006) WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta cells. Hum Mol Genet 15(10):1600–1609. https://doi.org/10.1093/hmg/ddl081

    Article  CAS  Google Scholar 

  69. Yamamoto WR, Bone RN, Sohn P, Syed F, Reissaus CA, Mosley AL, Wijeratne AB, True JD, Tong X, Kono T, Evans-Molina C (2019) Endoplasmic reticulum stress alters ryanodine receptor function in the murine pancreatic β-cell. J Biol Chem 294(1):168–181. https://doi.org/10.1074/jbc,RA118.005683

    Article  CAS  PubMed  Google Scholar 

  70. Yang BC, Wu SY, Leung PS (2020) Alcohol ingestion induces pancreatic islet dysfunction and apoptosis via mediation of FGF21 resistance. Ann Transl Med 8(6):310. https://doi.org/10.21037/atm.2020.02.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yazbeck P, Tauseef M, Kruse K, Amin MR, Sheikh R, Feske S, Komarova Y, Mehta D (2017) STIM1 phosphorylation at Y361 recruits ORAI1 to STIM1 puncta and induces entry. Sci Rep 7:42758. https://doi.org/10.1038/srep42758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yokoi N, Gheni G, Takahashi H, Seino S (2016) β-Cell glutanmate signaling: its role in incretin-induced insulin secretion. J Diabetes Investing 7(Suppl 1):38–43. https://doi.org/10.1111/jdi.12468

    Article  CAS  Google Scholar 

  73. You S, Zheng J, Chen Y, Huang H (2022) Research progress on the mechanism of beta-cell apoptosis in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 13:976465. https://doi.org/10.3389/fendo.2022.976465

    Article  PubMed  Google Scholar 

  74. Yu W, Niwa T, Miura Y, Horio F, Teradaira S, Ribar TJ, Means AR, Hasegawa Y, Senda T, Niki I (2002) Calmodulin overexpression cause Ca2+ -dependent apoptosis of pancreatic beta cells, which can be prevented by inhibition of nitric oxide synthase. Lab Invest 82(9):1229–1239. https://doi.org/10.1097/01.lab.0000027921.01548.c5

    Article  CAS  PubMed  Google Scholar 

  75. Yudin Y, Rohacs T (2012) Regulation of TRPM8 channel activity. Mol Cell Endocrinol 353(1–2):68–74. https://doi.org/10.1016/j.mce.2011.10.023

    Article  CAS  PubMed  Google Scholar 

  76. Zarayskiy V, Monje F, Peter K, Csutora P, Khodorov BI, Bolotina VM (2007) Store-operated Orai1 and IP3R-operated TRPC1 channel. Channels 1(2):246–252. https://doi.org/10.4161/chan.4835

    Article  PubMed  Google Scholar 

  77. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) Stim1 is a ca sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905. https://doi.org/10.1038/nature04147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang IX, Ren J, Vadrevu S, Raghavan M, Satin LS (2020) ER stress increases store-operated Ca2+ entry (SOCE) and augments basal insulin secretion in pancreatic beta cells. J Biol Chem 295(17):5685–5700. https://doi.org/10.1074/jbc.RA120.012721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zheng D, Wang G, Li S, Fan GC (1852) Peng T (2015) Calpain-1 induces endoplasmic reticulum stress in promoting cardiomyocyte apoptosis following hypoxia/reoxygenation. Biochim Biophys Acta 5:882–892. https://doi.org/10.1016/j.bbadis.2015.01.019

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by grants from the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (Grant No. 2021R1A2C2004171, 2021R1C1C2011264, 2021R1A2C1011233) and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health and Welfare, Republic of Korea (Grant No. HI14C1324).

Author information

Authors and Affiliations

Authors

Contributions

S.S.E. and I.S.S. organized and reviewed the manuscript. S.S.K. and J.H.Y. drew the figures. S.D.K. organized and wrote the manuscript.

Corresponding author

Correspondence to Dae-Kyu Song.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, SE., Shin, SK., Ju, H.Y. et al. Role of cytosolic and endoplasmic reticulum Ca2+ in pancreatic beta-cells: pros and cons. Pflugers Arch - Eur J Physiol 476, 151–161 (2024). https://doi.org/10.1007/s00424-023-02872-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-023-02872-2

Keywords

Navigation