Skip to main content
Log in

Impact of stretch on sarcomere length variability in isolated fully relaxed rat cardiac myocytes

  • Organ Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The contractility of cardiac muscle is greatly affected by preload via the Frank-Starling mechanism (FSM). It is based on preload-dependent activation of sarcomeres—the elementary contractile units in muscle cells. Recent findings show a natural variability in sarcomere length (SL) in resting cardiomyocytes that, moreover, is altered in an actively contracting myocyte. SL variability may contribute to the FSM, but it remains unresolved whether the change in the SL variability is regulated by activation process per se or simply by changes in cell stretch, i.e., average SL. To separate the roles of activation and SL, we characterized SL variability in isolated, fully relaxed rat ventricular cardiomyocytes (n = 12) subjected to a longitudinal stretch with the carbon fiber (CF) technique. Each cell was tested in three states: without CF attachment (control, no preload), with CF attachment without stretch, and with CF attachment and ~ 10% stretch of initial SL. The cells were imaged by transmitted light microscopy to retrieve and analyze individual SL and SL variability off-line by multiple quantitative measures such as coefficient of variation or median absolute deviation. We found that CF attachment without stretch did not affect the extent of SL variability nor average SL. In stretched myocytes, the averaged SL significantly increased, while the SL variability remained unchanged. This result clearly indicates that the non-uniformity of individual SL is not sensitive to the average SL itself in fully relaxed myocytes. We conclude that SL variability per se does not contribute to the FSM in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data acquired and analyzed during this study are available from the corresponding author upon reasonable request.

References

  1. Adkins AN, Fong RM, Dewald JPA, Murray WM (2022) Variability of in vivo sarcomere length measures in the upper limb obtained with second harmonic generation microendoscopy. Front Physiol 12:817334. https://doi.org/10.3389/fphys.2021.817334

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aït Mou Y, Reboul C, Andre L, Lacampagne A, Cazorla O (2009) Late exercise training improves non-uniformity of transmural myocardial function in rats with ischaemic heart failure. Cardiovasc Res 81(3):555–564. https://doi.org/10.1093/cvr/cvn229

    Article  CAS  PubMed  Google Scholar 

  3. Andre L, Boissière J, Reboul C, Perrier R, Zalvidea S, Meyer G, Thireau J, Tanguy S, Bideaux P, Hayot M, Boucher F, Obert P, Cazorla O, Richard S (2010) Carbon monoxide pollution aggravates ischemic heart failure through oxidative stress pathway. Am J Respir Crit Care Med 181(6):587–595. https://doi.org/10.1164/rccm.200905-0794OC

    Article  CAS  PubMed  Google Scholar 

  4. de Souza LF, Minozzo FC, Altman D, Rassier DE (2017) Microfluidic perfusion shows intersarcomere dynamics within single skeletal muscle myofibrils. Proc Natl Acad Sci U S A 114(33):8794–8799. https://doi.org/10.1073/pnas.1700615114

    Article  CAS  Google Scholar 

  5. de Souza LF, Rassier DE (2020) Sarcomere length nonuniformity and force regulation in myofibrils and sarcomeres. Biophys J 119:1–6. https://doi.org/10.1016/j.bpj.2020.11.005

    Article  CAS  Google Scholar 

  6. de Tombe PP, Mateja RD, Tachampa K, Ait Mou Y, Farman GP, Irving TC (2010) Myofilament length dependent activation. J Mol Cell Cardiol 48:851–858. https://doi.org/10.1016/j.yjmcc.2009.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Tombe PP, ter Keurs HEDJ (2016) Cardiac muscle mechanics: sarcomere length matters. J Mol Cell Cardiol 91:148–150. https://doi.org/10.1016/j.yjmcc.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  8. Dobesh DP, Konhilas JP, de Tombe PP (2002) Cooperative activation in cardiac muscle: impact of sarcomere length. Am J Physiol Heart Circ Physiol 282:H1055–H1062. https://doi.org/10.1152/ajpheart.00667.2001

    Article  CAS  PubMed  Google Scholar 

  9. Dvornikov AV, Dewan S, Alekhina OV, Pickett FB, de Tombe PP (2014) Novel approaches to determine contractile function of the isolated adult zebrafish ventricular cardiac myocyte. J Physiol 592(9):1949–1956. https://doi.org/10.1113/jphysiol.2014.270678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eisner DA, Caldwell JL, Trafford AW, Hutchings DC (2020) The control of diastolic calcium in the heart. Basic mechanisms and functional implications. Circ Res 126:395–412. https://doi.org/10.1161/CIRCRESAHA.119.315891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fujita H, Kaneshiro J, Takeda M, Sasaki K, Yamamoto R, Umetsu D, Kuranaga E, Higo S, Kondo T, Asano Y, Sakata Y, Miyagawa S, Watanabe TM (2023) Estimation of crossbridge-state during cardiomyocyte beating using second harmonic generation. Life Sci Alliance 6(7):e202302070. https://doi.org/10.26508/lsa.202302070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haeger R, de Souza LF, Rassier DE (2020) Sarcomere length nonuniformities dictate force production along the descending limb of the force–length relation. Proc R Soc B 287:20202133. https://doi.org/10.1098/rspb.2020.2133

    Article  PubMed  PubMed Central  Google Scholar 

  13. Haeger RM, Rassier DE (2020) Force enhancement after stretch of isolated myofibrils is increased by sarcomere length non-uniformities. Sci Rep 10:21590. https://doi.org/10.1038/s41598-020-78457-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Helmes M, Palmer BM (2022) Sarcomere length in the beating heart: synchronicity is optional. J Gen Physiol 154(2):e202113022. https://doi.org/10.1085/jgp.202113022

    Article  PubMed  PubMed Central  Google Scholar 

  15. Herzog W (2022) What can we learn from single sarcomere and myofibril preparations? Front Physiol 13:837611. https://doi.org/10.3389/fphys.2022.837611

    Article  PubMed  PubMed Central  Google Scholar 

  16. Johnston K, Jinha A, Herzog W (2016) The role of sarcomere length non-uniformities in residual force enhancement of skeletal muscle myofibrils. R Soc Open Sci 3:150657. https://doi.org/10.1098/rsos.150657

    Article  PubMed  PubMed Central  Google Scholar 

  17. Johnston K, Moo EK, Jinha A, Herzog W (2019) On sarcomere length stability during isometric contractions before and after active stretching. J Exp Biol 222:jeb209924. https://doi.org/10.1242/jeb.209924

    Article  PubMed  Google Scholar 

  18. Kobirumaki-Shimozawa F, Oyama K, Shimozawa T, Mizuno A, Ohki T, Terui T, Minamisawa S, Ishiwata S, Fukuda N (2016) Nano-imaging of the beating mouse heart in vivo: importance of sarcomere dynamics, as opposed to sarcomere length per se, in the regulation of cardiac function. J Gen Physiol 147(1):53–62. https://doi.org/10.1085/jgp.201511484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kobirumaki-Shimozawa F, Shimozawa T, Oyama K, Baba S, Li J, Nakanishi T, Terui T, Louch WE, Ishiwata S, Fukuda N (2021) Synchrony of sarcomeric movement regulates left ventricular pump function in the in vivo beating mouse heart. J Gen Physiol 153(11):e202012860. https://doi.org/10.1085/jgp.202012860

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li J, Sundnes J, Hou Y, Laasmaa M, Ruud M, Unger A, Kolstad TR, Frisk M, Norseng PA, Yang L, Setterberg IE, Alves ES, Kalakoutis M, Sejersted OM, Lanner JT, Linke WA, Lunde IG, de Tombe PP, Louch WE (2023) Stretch harmonizes sarcomere strain across the cardiomyocyte. Circ Res (Online ahead of print). https://doi.org/10.1161/CIRCRESAHA.123.322588

  21. Llewellyn ME, Barretto RPJ, Delp SL, Schnitzer MJ (2008) Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature 454(7205):784–788. https://doi.org/10.1038/nature07104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lookin O, de Tombe P, Boulali N, Gergely C, Cloitre T, Cazorla O (2023) Cardiomyocyte sarcomere length variability: membrane fluorescence versus second harmonic generation myosin imaging. J Gen Physiol 155(4):e202213289. https://doi.org/10.1085/jgp.202213289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lookin O, Khokhlova A, Myachina T, Butova X, Cazorla O, de Tombe P (2022) Contractile state dependent sarcomere length variability in isolated guinea-pig cardiomyocytes. Front Physiol 13:857471. https://doi.org/10.3389/fphys.2022.857471

    Article  PubMed  PubMed Central  Google Scholar 

  24. Louch WE, Stokke MK, Sjaastad I, Christensen G, Sejersted OM (2012) No rest for the weary: diastolic calcium homeostasis in the normal and failing myocardium. Physiology (Bethesda) 27(5):308–323. https://doi.org/10.1152/physiol.00021.2012

    Article  CAS  PubMed  Google Scholar 

  25. Mendoza AC, Rassier DE (2020) Extraction of thick filaments in individual sarcomeres affects force production by single myofibrils. Biophys J 118(8):1921–1929. https://doi.org/10.1016/j.bpj.2020.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moo EK, Fortuna R, Sibole SC, Abusara Z, Herzog W (2016) In vivo sarcomere lengths and sarcomere elongations are not uniform across an intact muscle. Front Physiol 7:187. https://doi.org/10.3389/fphys.2016.00187

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moo EK, Herzog W (2018) Single sarcomere contraction dynamics in a whole muscle. Sci Rep 8:15235. https://doi.org/10.1038/s41598-018-33658-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moo EK, Herzog W (2020) Sarcomere lengths become more uniform over time in intact muscle-tendon unit during isometric contractions. Front Physiol 11:448. https://doi.org/10.3389/fphys.2020.00448

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moo EK, Leonard TR, Herzog W (2017) In vivo sarcomere lengths become more non-uniform upon activation in intact whole muscle. Front Physiol 8:1015. https://doi.org/10.3389/fphys.2017.01015

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nance ME, Whitfield JT, Zhu Y, Gibson AK, Hanft LM, Campbell KS, Meininger GA, McDonald KS, Segal SS, Domeier TL (2015) Attenuated sarcomere lengthening of the aged murine left ventricle observed using two-photon fluorescence microscopy. Am J Physiol Heart Circ Physiol 309:H918–H925. https://doi.org/10.1152/ajpheart.00315.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rassier DE (2012) Residual force enhancement in skeletal muscles: one sarcomere after the other. J Muscle Res Cell Motil 33:155–165. https://doi.org/10.1007/s10974-012-9308-7

    Article  PubMed  Google Scholar 

  32. Rassier DE (2017) Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells. Am J Physiol Cell Physiol 313(2):C134–C145. https://doi.org/10.1152/ajpcell.00050.2017

    Article  PubMed  Google Scholar 

  33. Rassier DE, Pavlov I (2012) Force produced by isolated sarcomeres and half-sarcomeres after an imposed stretch. Am J Physiol Cell Physiol 302:C240–C248. https://doi.org/10.1152/ajpcell.00208.2011

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt J, Jinha A, Herzog W (2021) Sarcomere length measurement reliability in single myofibrils. J Biomech 126:110628. https://doi.org/10.1016/j.jbiomech.2021.110628

    Article  PubMed  Google Scholar 

  35. Shimamoto Y, Suzuki M, Mikhailenko SV, Yasuda K, Ishiwata S (2009) Inter-sarcomere coordination in muscle revealed through individual sarcomere response to quick stretch. Proc Natl Acad Sci U S A 106(29):11954–11959. https://doi.org/10.1073/pnas.0813288106

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shimozawa T, Hirokawa E, Kobirumaki-Shimozawa F, Oyama K, Shintani SA, Terui T, Kushida Y, Tsukamoto S, Fujii T, Ishiwata S, Fukuda N (2017) In vivo cardiac nano-imaging: a new technology for high-precision analyses of sarcomere dynamics in the heart. Prog Biophys Mol Biol 124:31–40. https://doi.org/10.1016/j.pbiomolbio.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  37. Shintani SA, Oyama K, Kobirumaki-Shimozawa F, Ohki T, Ishiwata S, Fukuda N (2014) Sarcomere length nanometry in rat neonatal cardiomyocytes expressed with a-actinin-AcGFP in Z discs. J Gen Physiol 143:513–524. https://doi.org/10.1085/jgp.201311118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Telley IA, Denoth J, Stussi E, Pfitzer G, Stehle R (2006) Half-sarcomere dynamics in myofibrils during activation and relaxation studied by tracking fluorescent markers. Biophys J 90:514–530. https://doi.org/10.1529/biophysj.105.070334

    Article  CAS  PubMed  Google Scholar 

  39. Tsukamoto S, Fujii T, Oyama K, Shintani SA, Shimozawa T, Kobirumaki-Shimozawa F, Ishiwata S, Fukuda N (2016) Simultaneous imaging of local calcium and single sarcomere length in rat neonatal cardiomyocytes using yellow Cameleon-Nano140. J Gen Physiol 148(4):341–355. https://doi.org/10.1085/jgp.201611604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Young KW, Kuo BP-P, O’Connor SM, Radic S, Lieber RL (2017) In vivo sarcomere length measurement in whole muscles during passive stretch and twitch contractions. Biophys J 112(4):805–812. https://doi.org/10.1016/j.bpj.2016.12.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Patrice Bideaux for assistance with the rat cell isolation procedures.

Funding

The study was supported by grants from the Centre National de la Recherche Scientifique (CNRS, France, grant #IEA00401 to OC), Agence Nationale pour la Recherche (ANR-21-CE14-0058, NITROSOCARD to OC), and NIH (HL62426 to PdT).

Author information

Authors and Affiliations

Authors

Contributions

OL, NB, OC, and PdT contributed to the conception of the study, design of experiments, analysis, and interpretation of the results. NB, OC, and PdT contributed to the experimental measurements which were performed at the Montpellier laboratories. OL designed the software for data processing. The manuscript was written by OL, OC, and PdT. All the authors approved the final version of the manuscript.

Corresponding author

Correspondence to Pieter de Tombe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lookin, O., Boulali, N., Cazorla, O. et al. Impact of stretch on sarcomere length variability in isolated fully relaxed rat cardiac myocytes. Pflugers Arch - Eur J Physiol 475, 1203–1210 (2023). https://doi.org/10.1007/s00424-023-02848-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-023-02848-2

Keywords

Navigation