Skip to main content

Advertisement

Log in

Contribution of TRPC3-mediated Ca2+ entry to taste transduction

  • Sensory Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The current concept of taste transduction implicates the TASR/PLCβ2/IP3R3/TRPM5 axis in mediating chemo-electrical coupling in taste cells of the type II. While generation of IP3 has been verified as an obligatory step, DAG appears to be a byproduct of PIP2 cleavage by PLCβ2. Here, we provide evidence that DAG-signaling could play a significant and not yet recognized role in taste transduction. In particular, we found that DAG-gated channels are functional in type II cells but not in type I and type III cells. The DAG-gated current presumably constitutes a fraction of the generator current triggered by taste stimulation in type II cells. Bitter stimuli and DAG analogs produced Ca2+ transients in type II cells, which were greatly decreased at low bath Ca2+, indicating their dependence on Ca2+ influx. Among DAG-gated channels, transcripts solely for TRPC3 were detected in the taste tissue, thus implicating this channel in mediating DAG-regulated Ca2+ entry. Release of the afferent neurotransmitter ATP from CV papillae was monitored online by using the luciferin/luciferase method and Ussing-like chamber. It was shown that ATP secretion initiated by bitter stimuli and DAG analogs strongly depended on mucosal Ca2+. Based on the overall findings, we speculate that in taste transduction, IP3-driven Ca2+ release is transient and mainly responsible for rapid activation of Ca2+-gated TRPM5 channels, thus forming the initial phase of receptor potential. DAG-regulated Ca2+ entry through apically situated TRPC3 channels extends the primary Ca2+ signal and preserves TRPM5 activity, providing a needful prolongation of the receptor potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100:693–702. https://doi.org/10.1016/s0092-8674(00)80705-9

    Article  CAS  PubMed  Google Scholar 

  2. Ahmad R, Dalziel JE (2020) G protein-coupled receptors in taste physiology and pharmacology. Front Pharmacol 11:587664. https://doi.org/10.3389/fphar.2020.587664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bakalyar HA, Reed RR (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250:1403–1406. https://doi.org/10.1126/science.2255909

    Article  CAS  PubMed  Google Scholar 

  4. Banik DD, Benfey ED, Martin LE, Kay KE, Loney GC, Nelson AR, Ahart ZC, Kemp BT, Kemp BR, Torregrossa A, Medler KF (2020) A subset of broadly responsive type III taste cells contribute to the detection of bitter, sweet and umami stimuli. PLoS Genet 16:e1008925. https://doi.org/10.1371/journal.pgen.1008925

    Article  CAS  Google Scholar 

  5. Banik DD, Martin LE, Freichel M, Torregrossa AM, Medler KF (2018) TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proc Natl Acad Sci U S A 115:E772–E781. https://doi.org/10.1073/pnas.1718802115

    Article  CAS  Google Scholar 

  6. Baryshnikov SG, Rogachevskaja OA, Kolesnikov SS (2003) Calcium signaling mediated by P2Y receptors in mouse taste cells. J Neurophysiol 90:3283–3294. https://doi.org/10.1371/journal.pgen.1008925

    Article  CAS  PubMed  Google Scholar 

  7. Beech DJ (2012) Integration of transient receptor potential canonical channels with lipids. Acta Physiol (Oxf) 204:227–237. https://doi.org/10.1111/j.1748-1716.2011.02311.x

    Article  CAS  PubMed  Google Scholar 

  8. Berridge MJ (2016) The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol Rev 96:1261–1296. https://doi.org/10.1152/physrev.00006.2016

    Article  CAS  PubMed  Google Scholar 

  9. Brown JW, McKnight CJ (2010) Molecular model of the microvillar cytoskeleton and organization of the brush border. PLoS ONE 5:e9406. https://doi.org/10.1371/journal.pone.0009406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bystrova MF, Romanov RA, Rogachevskaja OA, Churbanov GD, Kolesnikov SS (2010) Functional expression of the extracellular-Ca2+-sensing receptor in mouse taste cells. J Cell Sci 123:972–982. https://doi.org/10.1242/jcs.061879

    Article  CAS  PubMed  Google Scholar 

  11. Caicedo A, Jafri MS, Roper SD (2000) In situ Ca2+ imaging reveals neurotransmitter receptors for glutamate in taste receptor cells. J Neurosci 20:7978–7985. https://doi.org/10.1523/JNEUROSCI.20-21-07978.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caicedo A, Kim KN, Roper SD (2002) Individual mouse taste cells respond to multiple chemical stimuli. J Physiol 544:501–509. https://doi.org/10.1113/jphysiol.2002.027862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caicedo A, Roper SD (2001) Taste receptor cells that discriminate between bitter stimuli. Science 291:1557–1560. https://doi.org/10.1126/science.1056670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ (2000) T2Rs function as bitter taste receptors. Cell 100:703–711. https://doi.org/10.1016/s0092-8674(00)80706-0

    Article  CAS  PubMed  Google Scholar 

  15. Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba NJ, Zuker CS (2009) The taste of carbonation. Science 326:443–445. https://doi.org/10.1126/science.1174601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clapp TR, Trubey KR, Vandenbeuch A, Stone LM, Margolskee RF, Chaudhari N, Kinnamon SC (2008) Tonic activity of Galpha-gustducin regulates taste cell responsivity. FEBS Lett 582:3783–3787. https://doi.org/10.1016/j.febslet.2008.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dibattista M, Pifferi S, Boccaccio A, Menini A, Reisert J (2017) The long tale of the calcium activated Cl- channels in olfactory transduction. Channels (Austin) 11:399–414. https://doi.org/10.1080/19336950.2017.1307489

    Article  PubMed  Google Scholar 

  18. Dickson EJ, Falkenburger BH, Hille B (2013) Quantitative properties and receptor reserve of the IP3 and calcium branch of Gq-coupled receptor signaling. J Gen Physiol 141:521–535. https://doi.org/10.1085/jgp.201210886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dickson EJ, Hille B (2019) Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 476:1–23. https://doi.org/10.1042/BCJ20180022

    Article  CAS  PubMed  Google Scholar 

  20. Eichmann TO, Lass A (2015) DAG tales: the multiple faces of diacylglycerol--stereochemistry, metabolism, and signaling. Cell Mol Life Sci 72:3931–3952. https://doi.org/10.1007/s00018-015-1982-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Falkenburger B, Jensen J, Hille B (2010) Kinetics of PIP2 metabolism and KCNQ2/3 channel regulation studied with a voltage-sensitive phosphatase in living cells. J Gen Physiol 135:99–114. https://doi.org/10.1085/jgp.200910345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fesenko EE, Kolesnikov SS, Lyubarsky AL (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313:310–313. https://doi.org/10.1038/313310a0

    Article  CAS  PubMed  Google Scholar 

  23. Fettiplace R, Kim KX (2014) The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev 94:951–986. https://doi.org/10.1152/physrev.00038.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gillespie PG, Müller U (2009) Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 139:33–44. https://doi.org/10.1016/j.cell.2009.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hacker K, Laskowski A, Feng L, Restrepo D, Medler K (2008) Evidence for two populations of bitter responsive taste cells in mice. J Neurophysiol 99:1503–1514. https://doi.org/10.1152/jn.00892.2007

    Article  PubMed  Google Scholar 

  26. Hashimotodani Y, Ohno-Shosaku T, Tsubokawa H, Ogata H, Emoto K, Maejima T, Araishi K, Shin HS, Kano M (2005) Phospholipase Cbeta serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal. Neuron 45:257–268. https://doi.org/10.1016/j.neuron.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  27. Hisatsune C, Yasumatsu K, Takahashi-Iwanaga H, Ogawa N, Kuroda Y, Yoshida R, Ninomiya Y, Mikoshiba K (2007) Abnormal taste perception in mice lacking the type 3 inositol 1,4,5-trisphosphate receptor. J Biol Chem 282:37225–37231. https://doi.org/10.1074/jbc.M705641200

    Article  CAS  PubMed  Google Scholar 

  28. Horowitz LF, Hirdes W, Byung-Chang S, Hilgemann D, Mackie K, Hille B (2005) Phospholipase C in living cells: activation, inhibition, Ca2+ requirement, and regulation of M current. J Gen Physiol 126:243–262. https://doi.org/10.1085/jgp.200509309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kinnamon SC (2016) G protein–coupled taste transduction. In: Zufall F, Munger SD (eds) Chemosensory Transduction, 1st edn. Elsevier, New York, pp 271–285

    Chapter  Google Scholar 

  30. Kolesnikov SS, Margolskee RF (1998) Extracellular K+ activates a K+- and H+-permeable conductance in frog taste cells. J Physiol 507:415–432. https://doi.org/10.1111/j.1469-7793.1998.415bt.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lange K (2011) Fundamental role of microvilli in the main functions of differentiated cells: outline of an universal regulating and signaling system at the cell periphery. J Cell Physiol 226:896–927. https://doi.org/10.1002/jcp.22302

    Article  CAS  PubMed  Google Scholar 

  32. Leinders-Zufall T, Rand MN, Shepherd GM, Greer CA, Zufall F (1997) Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics. J Neurosci 17:4136–4148. https://doi.org/10.1523/JNEUROSCI.17-11-04136.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lewandowski BC, Sukumaran SK, Margolskee RF, Bachmanov AA (2016) Amiloride-insensitive salt taste is mediated by two populations of type III taste cells with distinct transduction mechanisms. J Neurosci 36:1942–1953. https://doi.org/10.1523/JNEUROSCI.2947-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lievremont JP, Bird GS, Putney JW Jr (2005) Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol Pharmacol 68:758–762. https://doi.org/10.1124/mol.105.012856

    Article  CAS  PubMed  Google Scholar 

  35. Liman ER, Corey DP, Dulac C (1999) TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci U S A 96:5791–5796. https://doi.org/10.1073/pnas.96.10.5791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liman ER, Kinnamon SC (2021) Sour taste: receptors, cells and circuits. Curr Opin Physiol 20:8–15. https://doi.org/10.1016/j.cophys.2020.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lindemann B (1996) Taste reception. Physiol Rev 76:719–766. https://doi.org/10.1152/physrev.1996.76.3.719

    Article  CAS  PubMed  Google Scholar 

  38. Lindemann B (2001) Receptors and transduction in taste. Nature 413:219–225. https://doi.org/10.1038/35093032

    Article  CAS  PubMed  Google Scholar 

  39. Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40:551e561. https://doi.org/10.1016/s0896-6273(03)00675-5

    Article  Google Scholar 

  40. Lumpkin EA, Marquis RE, Hudspeth AJ (1997) The selectivity of the hair cell’s mechanoelectrical-transduction channel promotes Ca2+ flux at low Ca2+ concentrations. Proc Natl Acad Sci U S A 94:10997–11002. https://doi.org/10.1073/pnas.94.20.10997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma Z, Taruno A, Ohmoto M, Jyotaki M, Lim JC, Miyazaki H, Niisato N, Marunaka Y, Lee RJ, Hoff H, Payne R, Demuro A, Parker I, Mitchell CH, Henao-Mejia J, Tanis JE, Matsumoto I, Tordoff MG, Foskett JK (2018) CALHM3 is essential for rapid ion channel-mediated purinergic neurotransmission of GPCR-mediated tastes. Neuron 98:547–561.e10. https://doi.org/10.1016/j.neuron.2018.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Medler KF (2015) Calcium signaling in taste cells. Biochim Biophys Acta 1853:2025–2032. https://doi.org/10.1016/j.bbamcr.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  43. Menco BP, Carr VM, Ezeh PI, Liman ER, Yankova MP (2001) Ultrastructural localization of G-proteins and the channel protein TRP2 to microvilli of rat vomeronasal receptor cells. J Comp Neurol 438:468–489. https://doi.org/10.1002/cne.1329

    Article  CAS  PubMed  Google Scholar 

  44. Murray RG (1973) The ultrastructure of taste buds. In: Friedmann I (ed) The ultrastructure of sensory organs. North Holland Pub Co, Amsterdam, pp 1–81

    Google Scholar 

  45. Murtaza B, Hichami A, Khan AS, Plesnik J, Sery O, Dietrich A, Birnbaumer L, Khan NA (2021) Implication of TRPC3 channel in gustatory perception of dietary lipids. Acta Physiol (Oxf) 231:e13554. https://doi.org/10.1111/apha.13554

    Article  CAS  PubMed  Google Scholar 

  46. Myeong J, de la Cruz L, Jung SR, Yeon JH, Suh BC, Koh DS, Hille B (2020) Phosphatidylinositol 4,5-bisphosphate is regenerated by speeding of the PI 4-kinase pathway during long PLC activation. J Gen Physiol 152:e202012627. https://doi.org/10.1085/jgp.202012627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:442–444. https://doi.org/10.1038/325442a0

    Article  CAS  PubMed  Google Scholar 

  48. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid taste receptor. Nature 416:199–202. https://doi.org/10.1038/nature726

    Article  CAS  PubMed  Google Scholar 

  49. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106:381–390. https://doi.org/10.1016/s0092-8674(01)00451-2

    Article  CAS  PubMed  Google Scholar 

  50. Nilius B (2003) Calcium-impermeable monovalent cation channels: a TRP connection? Br J Pharmacol 138:5–7. https://doi.org/10.1038/sj.bjp.0705073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nomura K, Nakanishi M, Ishidate F, Iwata K, Taruno A (2020) All-electrical Ca2+-independent signal transduction mediates attractive sodium taste in taste buds. Neuron 106:816–829. https://doi.org/10.1016/j.neuron.2020.03.006

    Article  CAS  PubMed  Google Scholar 

  52. Ogura T, Margolskee RF, Kinnamon SC (2002) Taste receptor cell responses to the bitter stimulus denatonium involve Ca2+ influx via store-operated channels. J Neurophysiol 87:3152–3155. https://doi.org/10.1152/jn.2002.87.6.3152

    Article  CAS  PubMed  Google Scholar 

  53. Oka Y, Butnaru M, von Buchholtz L, Ryba NJ, Zuker CS (2013) High salt recruits aversive taste pathways. Nature 494:472–475. https://doi.org/10.1038/nature11905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Parys JB, Vervliet T (2020) New insights in the IP3 receptor and its regulation. Adv Exp Med Biol 1131:243–270. https://doi.org/10.1007/978-3-030-12457-1_10

    Article  CAS  PubMed  Google Scholar 

  55. Perez CA, Margolskee RF, Kinnamon SC, Ogura T (2003) Making sense with TRP channels: store-operated calcium entry and the ion channel Trpm5 in taste receptor cells. Cell Calcium 33:541–549. https://doi.org/10.1016/s0143-4160(03)00059-9

    Article  CAS  PubMed  Google Scholar 

  56. Prole DL, Taylor CW (2019) Structure and function of IP3 receptors. Cold Spring Harb Perspect Biol 11:a035063. https://doi.org/10.1101/cshperspect.a035063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roebber JK, Roper SD, Chaudhari N (2019) The role of the anion in salt (NaCl) detection by mouse taste buds. J Neurosci 39:6224–6232. https://doi.org/10.1523/JNEUROSCI.2367-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Romanov RA, Kolesnikov SS (2006) Electrophysiologically identified subpopulations of taste bud cells. Neurosci Lett 395:249–254. https://doi.org/10.1016/j.neulet.2005.10.085

    Article  CAS  PubMed  Google Scholar 

  59. Romanov RA, Lasher RS, High B, Savidge LE, Lawson A, Rogachevskaja OA, Zhao H, Rogachevsky VV, Bystrova MF, Churbanov GD, Adameyko I, Harkany T, Yang R, Kidd GJ, Marambaud P, Kinnamon JC, Kolesnikov SS, Finger TE (2018) Chemical synapses without synaptic vesicles: purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex. Sci Signal 11:eaao1815. https://doi.org/10.1126/scisignal.aao1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Romanov RA, Rogachevskaja OA, Bystrova MF, Jiang P, Margolskee RF, Kolesnikov SS (2007) Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J 26:657–667. https://doi.org/10.1038/sj.emboj.7601526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roper SD, Chaudhari N (2017) Taste buds: cells, signals and synapses. Nat Rev Neurosci 18:485–497. https://doi.org/10.1038/nrn.2017.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schleifer H, Doleschal B, Lichtenegger M, Oppenrieder R, Derler I, Frischauf I, Glasnov TN, Kappe CO, Romanin C, Groschner K (2012) Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca2+ entry pathways. Br J Pharmacol 167:1712–1722. https://doi.org/10.1111/j.1476-5381.2012.02126.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Spehr M (2016) Vomeronasal transduction and cell signaling. In: Zufall F, Munger SD (eds) Chemosensory transduction. The detection of odors, tastes, and other chemostimuli, 1st edn. Academic Press, pp 191–206

    Chapter  Google Scholar 

  64. Svobodova B, Groschner K (2016) Mechanisms of lipid regulation and lipid gating in TRPC channels. Cell Calcium 59:271–279. https://doi.org/10.1016/j.ceca.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  65. Taruno A, Nomura K, Kusakizako T, Ma Z, Nureki O, Foskett JK (2021) Taste transduction and channel synapses in taste buds. Pflugers Arch 473:3–13. https://doi.org/10.1007/s00424-020-02464-4

    Article  CAS  PubMed  Google Scholar 

  66. Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, Li A, Adrien L, Zhao H, Leung S, Abernethy M, Koppel J, Davies P, Civan MM, Chaudhari N, Matsumoto I, Hellekant G, Tordoff MG, Marambaud P, Foskett JK (2013) CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495:223–226. https://doi.org/10.1038/nature11906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thillaiappan NB, Chakraborty P, Hasan G, Taylor CW (2019) IP3 receptors and Ca2+ entry. Biochim Biophys Acta Mol Cell Res 1866:1092–1100. https://doi.org/10.1016/j.bbamcr.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  68. Tu YH, Cooper AJ, Teng B, Chang RB, Artiga DJ, Turner HN, Mulhall EM, Ye W, Smith AD, Liman ER (2018) An evolutionarily conserved gene family encodes proton-selective ion channels. Science 359:1047–1050. https://doi.org/10.1126/science.aao3264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wellendorph P, Bräuner-Osborne H (2009) Molecular basis for amino acid sensing by family C G-protein-coupled receptors. Br J Pharmacol 156:869–884. https://doi.org/10.1111/j.1476-5381.2008.00078.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wilson CE, Lasher RS, Yang R, Dzowo Y, Kinnamon JC, Finger TE (2022) Taste bud connectome: implications for taste information processing. J Neurosci 42:804–816. https://doi.org/10.1523/jneurosci.0838-21.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu X, Lozinskaya I, Costell M, Lin Z, Ball JA, Bernard R, Behm DJ, Marino JP, Schnackenberg CG (2013) Characterization of small molecule TRPC3 and TRPC6 agonist and antagonists. Biophys J 104:454a. https://doi.org/10.1016/j.bpj.2012.11.2513

    Article  Google Scholar 

  72. Yang R, Dzowo YK, Wilson CE, Russell RL, Kidd GJ, Salcedo E, Lasher RS, Kinnamon JC, Finger TE (2020) Three-dimensional reconstructions of mouse circumvallate taste buds using serial blockface scanning electron microscopy: I. Cell types and the apical region of the taste bud. J Comp Neurol 528:756–771. https://doi.org/10.1002/cne.24779

    Article  CAS  PubMed  Google Scholar 

  73. Yau KW, Hardie RC (2009) Phototransduction motifs and variations. Cell 139:246–264. https://doi.org/10.1016/j.cell.2009.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293–301. https://doi.org/10.1016/s0092-8674(03)00071-0

    Article  CAS  PubMed  Google Scholar 

  75. Zufall F, Leinders-Zufall T (2000) The cellular and molecular basis of odor adaptation. Chem Senses 25:473–481. https://doi.org/10.1093/chemse/25.4.473

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partly supported by the Russian Science Foundation (grant 22-14-00031 to SK).

Author information

Authors and Affiliations

Authors

Contributions

AC performed electrophysiological and imaging experiments, AK and OR assayed ATP release, MB and NK performed the expression analysis and immunostaining, and SK designed the research and wrote the paper. All authors contributed to data analysis and figure design and reviewed the manuscript.

Corresponding author

Correspondence to Stanislav S. Kolesnikov.

Ethics declarations

Ethics approval

All experimental protocols were in accordance with local regulatory requirements and the European Communities Council Directive (2010/63/EU) and approved by the Commission on Biosafety and Bioethics (Institute of Cell Biophysics–Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Permission no. 4/062020 (June 12, 2020).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 369 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkashin, A.P., Rogachevskaja, O.A., Khokhlov, A.A. et al. Contribution of TRPC3-mediated Ca2+ entry to taste transduction. Pflugers Arch - Eur J Physiol 475, 1009–1024 (2023). https://doi.org/10.1007/s00424-023-02834-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-023-02834-8

Keywords

Navigation