Skip to main content
Log in

Aromatic amino acids in the finger domain of the FMRFamide-gated Na\(^+\) channel are involved in the FMRFamide recognition and the activation

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

This article has been updated

Abstract

FMRFamide-gated Na\(^+\) channel (FaNaC) is a member of the DEG/ENaC family and activated by a neuropeptide, FMRFamide. Structural information about the FMRFamide-dependent gating is, however, still elusive. Because two phenylalanines of FMRFamide are essential for the activation of FaNaC, we hypothesized that aromatic-aromatic interaction between FaNaC and FMRFamide is critical for FMRFamide recognition and/or the activation gating. Here, we focused on eight conserved aromatic residues in the finger domain of FaNaCs and tested our hypothesis by mutagenic analysis and in silico docking simulations. The mutation of conserved aromatic residues in the finger domain reduced the FMRFamide potency, suggesting that the conserved aromatic residues are involved in the FMRFamide-dependent activation. The kinetics of the FMRFamide-gated currents were also modified substantially in some mutants. Some results of docking simulations were consistent with a hypothesis that the aromatic-aromatic interaction between the aromatic residues in FaNaC and FMRFamide is involved in the FMRFamide recognition. Collectively, our results suggest that the conserved aromatic residues in the finger domain of FaNaC are important determinants of the ligand recognition and/or the activation gating in FaNaC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 31 July 2023

    Supplement file has been added to this article.

References

  1. Askwith CC, Cheng C, Ikuma M, Benson C, Price MP, Welsh MJ (2000) Neu-ropeptide FF and FMRFamide potentiate acid-evoked currents from sensory neurons and proton-gated DEG/ENaC channels. Neuron 26:133–141. https://doi.org/10.1016/s0896-6273(00)81144-7

    Article  CAS  PubMed  Google Scholar 

  2. Baconguis I, Gouaux E (2012) Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature 489(7416):400–405. https://doi.org/10.1038/nature11375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baconguis I, Bohlen CJ, Goehring A, Julius D, Gouaux E (2014) X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na+-selective channel. Cell 156(4):717–729. https://doi.org/10.1016/j.cell.2014.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bargeton B, Iwaszkiewicz J, Bonifacio G, Roy S, Zoete V, Kellenberger S (2019) Mutations in the palm domain disrupt modulation of acid-sensing ion channel 1a currents by neuropeptides. Sci Rep 9(1):2599. https://doi.org/10.1038/s41598-018-37426-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bohlen CJ, Chesler AT, Sharif-Naeini R, Medzihradszky KF, Zhou S, King D, Sánchez EE, Burlingame AL, Basbaum AI, Julius D (2011) A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479(7373):410–414. https://doi.org/10.1038/nature10607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bonifacio G, Lelli CI, Kellenberger S (2014) Protonation controls ASIC1a activity via coordinated movements in multiple domains. J. Gen. Physiol. 143(1):105–118. https://doi.org/10.1085/jgp.201311053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Catarsi S, Babinski K, Seguela P (2001) Selective modulation of heteromeric ASIC proton-gated channels by neuropeptide FF. Neuropharmacology 41(5):592–600. https://doi.org/10.1016/s0028-3908(01)00107-1

    Article  CAS  PubMed  Google Scholar 

  8. Chen X, Kalbacher H, Gründer S (2006) Interaction of acid-sensing ion channel (ASIC) 1 with the tarantula toxin psalmotoxin 1 is state dependent. J. Gen. Physiol. 127(3):267–276. https://doi.org/10.1085/jgp.200509409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Colquhoun D (1998) Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125(5):924–947. https://doi.org/10.1038/sj.bjp.0702164

    Article  CAS  PubMed  Google Scholar 

  10. Cottrell GA (1997) The rst peptide-gated ion channel. J. Exp. Biol. 200(Pt 18):2377–2386. https://doi.org/10.1242/jeb.200.18.2377

    Article  CAS  PubMed  Google Scholar 

  11. Cottrell GA (2005) Domain near TM1 inuences agonist and antagonist responses of peptide-gated Na+ channels. Pflügers Arch. 450(3):168–177. https://doi.org/10.1007/s00424-005-1385-7

    Article  CAS  PubMed  Google Scholar 

  12. Cottrell GA, Green KA, Davies NW (1990) The neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide) can activate a ligand-gated ion channel in Helix neurones. Plügers Arch. 416(5):612–614. https://doi.org/10.1007/BF00382698

    Article  CAS  Google Scholar 

  13. Cottrell GA, Jeziorski MC, Green KA (2001) Location of a ligand recognition site of FMRFamide-gated Na+ channels. FEBS Lett. 489(1):71–74. https://doi.org/10.1016/s0014-5793(01)02081-6

    Article  CAS  PubMed  Google Scholar 

  14. Dandamudi M, Hausen H, Lynagh T (2022) Comparative analysis defines a broader FMRFamide-gated sodium channel family and determinants of neuropeptide sensi- tivity. J Biol Chem 298(7):102086. https://doi.org/10.1016/j.jbc.2022.102086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dawson RJ, Benz J, Stohler P, Tetaz T, Joseph C, Huber S, Schmid G, Hügin D, Pimlin P, Trube G, Rudolph MG, Hennig M, Ruf A (2012) Structure of the acid-sensing ion channel 1 in complex with the gating modi er Psalmotoxin 1. Nat Commun 3:936. https://doi.org/10.1038/ncomms1917

  16. Dürrnagel S, Kuhn A, Tsiairis CD, Williamson M, Kalbacher H, Grimmelikhuijzen CJ, Holstein TW, Gründer S (2010) Three homologous subunits form a high affinity peptide-gated ion channel in Hydra. J. Biol. Chem. 285(16):11958–11965. https://doi.org/10.1074/jbc.M109.059998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dürrnagel S, Falkenburger BH, Gründer S (2012) High Ca2+ permeability of a peptide-gated DEG/ENaC from Hydra. J. Gen. Physiol. 140(4):391–402. https://doi.org/10.1085/jgp.201210798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Feyfant E, Šali A, Fiser A (2007) Modeling mutations in protein structures. Protein Sci. 16(9):2030–2041. https://doi.org/10.1110/ps.072855507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fujimoto A, Kodani Y, Furukawa Y (2017) Modulation of the FMRFamide-gated Na+ channel by external Ca2+. Pflügers Arch. 469(10):1335–1347. https://doi.org/10.1007/s00424-017-2021-z

    Article  CAS  PubMed  Google Scholar 

  20. Furukawa Y, Miyawaki Y, Abe G (2006) Molecular cloning and functional charac-terization of the Aplysia FMRFamide-gated Na+ channel. Pflügers Arch. 451(5):646–656. https://doi.org/10.1007/s00424-005-1498-z

    Article  CAS  PubMed  Google Scholar 

  21. Golubovic A, Kuhn A, Williamson M, Kalbacher H, Holstein TW, Grimmelikhuijzen CJ, Gründer S (2007) A peptide-gated ion channel from the freshwater polyp Hydra. J. Biol. Chem. 282(48):35098–35103. https://doi.org/10.1074/jbc.M706849200

    Article  CAS  PubMed  Google Scholar 

  22. Green KA, Cottrell GA (1999) Block of the Helix FMRFamide-gated Na+ chan-nel by FMRFamide and its analogues. Journal of Physiology 519:47–56. https://doi.org/10.1111/j.1469-7793.1999.0047o.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Green KA, Cottrell GA (2002) Activity modes and modulation of the peptide-gated Na+ channel of Helix neurones. Pflügers Arch. 443(5–6):813–821. https://doi.org/10.1007/s00424-001-0750-4

    Article  CAS  PubMed  Google Scholar 

  24. Gründer S, Ramirez AO, Jekely G (2022) Neuropeptides and degenerin/epithelial Na+ channels: a relationship from mammals to cnidarians. J Physiol, online. https://doi.org/10.1113/JP282309

    Article  Google Scholar 

  25. Hanukoglu I, Hanukoglu A (2016) Epithelial sodium channel (ENaC) family: Phy-logeny, structure-function, tissue distribution, and associated inherited diseases. Gene 579(2):95–132. https://doi.org/10.1016/j.gene.2015.12.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449(7160):316–323. https://doi.org/10.1038/nature06163

    Article  CAS  PubMed  Google Scholar 

  27. Jeziorski MC, Green KA, Sommerville J, Cottrell GA (2000) Cloning and expression of a FMRFamide-gated Na+ channel from Helisoma trivolvis and comparison with the 38 native neuronal channel. J. Physiol. (Lond.) 526(Pt 1):13–25. https://doi.org/10.1111/j.1469-7793.2000.00013.x

    Article  CAS  PubMed  Google Scholar 

  28. Jones MV, Westbrook GL (1995) Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15(1):181–191. https://doi.org/10.1016/0896-6273(95)90075-6

    Article  CAS  PubMed  Google Scholar 

  29. Jumper J et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure. Physiological Review 82:735–767. https://doi.org/10.1152/physrev.00007.2002

    Article  CAS  Google Scholar 

  31. Kleyman TR, Carattino MD, Hughey RP (2009) ENaC at the cutting edge: regula-tion of epithelial sodium channels by proteases. J. Biol. Chem. 284(31):20447–20451. https://doi.org/10.1074/jbc.R800083200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kodani Y, Furukawa Y (2010) Position 552 in a FMRFamide-gated Na+ channel affects the gating properties and the potency of FMRFamide. Zool. Sci. 27(5):440–448. https://doi.org/10.2108/zsj.27.440

    Article  CAS  Google Scholar 

  33. Kodani Y, Furukawa Y (2014) Electrostatic charge at position 552 affects the ac-tivation and permeation of FMRFamide-gated Na+ channels. J Physiol Sci 64(2):141–150. https://doi.org/10.1007/s12576-013-0303-6

    Article  CAS  PubMed  Google Scholar 

  34. Krauson AJ, Carattino MD (2016) The thumb domain mediates acid-sensing ion channel desensitization. J. Biol. Chem. 291(21):11407–11419. https://doi.org/10.1074/jbc.M115.702316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lamiable A, Thávenet P, Rey J, Vavrusa M, Derreumaux P, Tuffáry P (2016) PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 44(W1):W449-454. https://doi.org/10.1093/nar/gkw329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lingueglia E, Champigny G, Lazdunski M, Barbry P (1995) Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 378(6558):730–733. https://doi.org/10.1038/378730a0

    Article  CAS  PubMed  Google Scholar 

  37. Lingueglia E, Deval E, Lazdunski M (2006) FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRFamide and related peptides. Peptides 27(5):1138–1152. https://doi.org/10.1016/j.peptides.2005.06.037

    Article  CAS  PubMed  Google Scholar 

  38. Niu YY, Yang Y, Liu Y, Huang LD, Yang XN, Fan YZ, Cheng XY, Cao P, Hu YM, Li L, Lu XY, Tian Y, Yu Y (2016) Exploration of the peptide recognition of an amiloride-sensitive FMRFamide peptide-gated sodium channel. J. Biol. Chem. 291(14):7571–7582. https://doi.org/10.1074/jbc.M115.710251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Noreng S, Bharadwaj A, Posert R, Yoshioka C, Baconguis I (2018) Structure of the human epithelial sodium channel by cryo-electron microscopy. Elife 7:e39340. https://doi.org/10.7554/eLife.39340

    Article  PubMed  PubMed Central  Google Scholar 

  40. Perry SJ, Straub VA, Schoeld MG, Burke JF, Benjamin PR (2001) Neuronal expression of an FMRFamide-gated Na+ channel and its modulation by acid pH. J. Neurosci. 21(15):5559–5567. https://doi.org/10.1523/JNEUROSCI.21-15-05559.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Fer-rin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  42. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011. https://www.R-project.org/ ISBN 3-900051-07-0

  43. Reiners M, Margreiter MA, Oslender-Bujotzek A, Rossetti G, Gründer S, Schmidt A (2018) The Conorfamide RPRFa Stabilizes the Open Conformation of Acid-Sensing Ion Channel 3 via the Nonproton Ligand-Sensing Domain. Mol Pharmacol 94(4):1114–1124. https://doi.org/10.1124/mol.118.112375

    Article  CAS  PubMed  Google Scholar 

  44. Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234(3):779–815. https://doi.org/10.1006/jmbi.1993.1626

    Article  PubMed  Google Scholar 

  45. Schmidt A, Bauknecht P, Williams EA, Augustinowski K, Gründer S, Jékely G (2018) Dual signaling of Wamide myoinhibitory peptides through a peptide-gated channel and a GPCR in Platynereis. FASEB J. 32(10):5338–5349. https://doi.org/10.1096/fj.201800274R

    Article  CAS  PubMed  Google Scholar 

  46. Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8. November 2015

  47. Sherwood TW, Frey EN, Askwith CC (2012) Structure and activity of the acid-sensing ion channels. Am. J. Physiol., Cell Physiol. 303(7):699–710. https://doi.org/10.1152/ajpcell.00188.2012

    Article  CAS  Google Scholar 

  48. Stefani E, Bezanilla F (1998) Cut-open oocyte voltage-clamp technique. Methods Enzymol 293:300–318. https://doi.org/10.1016/s0076-6879(98)93020-8

    Article  CAS  PubMed  Google Scholar 

  49. Taglialatela M, Toro L, Stefani E (1992) Novel voltage clamp to record small, fast currents from ion channels expressed in Xenopus oocytes. Biophys J 61(1):78–82. https://doi.org/10.1016/S0006-3495(92)81817-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Velankar S, Alhroub Y, Alili A, Best C, Boutselakis HC, Caboche S, Conroy MJ, Dana JM, van Ginkel G, Golovin A, Gore SP, Gutmanas A, Haslam P, Hirshberg M, John M, Lagerstedt I, Mir S, Newman LE, Oldfield TJ, Penkett CJ, Pineda-Castillo J, Rinaldi L, Sahni G, Sawka G, Sen S, Slowley R, Sousa da Silva AW, Suarez-Uruena A, Swaminathan GJ, Symmons MF, Vranken WF, Wainwright M, Kleywegt GJ (2011) PDBe: Protein Data Bank in Europe. Nucleic Acids Res. 39(Database issue):D402–410. https://doi.org/10.1093/nar/gkq985

  52. Xie J, Price MP, Wemmie JA, Askwith CC, Welsh MJ (2003) ASIC3 and ASIC1 mediate FMRFamide-related peptide enhancement of H+-gated currents in cultured dorsal root ganglion neurons. Journal of Neurophysiology 89:2459–2465. https://doi.org/10.1152/jn.00707.2002

  53. Yang H, Yu Y, Li WG, Yu F, Cao H, Xu TL, Jiang H (2009) Inherent dynamics of the acid-sensing ion channel 1correlates with the gating mechanism. PLoS Biol. 7(7):e1000151. https://doi.org/10.1371/journal.pbio.1000151

  54. Yoder N, Yoshioka C, Gouaux E (2018) Gating mechanisms of acid-sensing ion channels. Nature 555(7696):397–401. https://doi.org/10.1038/nature25782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhainazarov AB, Cottrell GA (1998) Single-channel currents of a peptide-gated sodium channel expressed in Xenopus oocytes. J. Physiol. (Lond.) 513(Pt 1):19–31. https://doi.org/10.1111/j.1469-7793.1998.019by.x

    Article  CAS  PubMed  Google Scholar 

  56. Zhao B, Rassendren F, Kaang BK, Furukawa Y, Kubo T, Kandel ER (1994) A new class of noninactivating K+ channels from aplysia capable of contributing to the resting potential and ring patterns of neurons. Neuron 13(5):1205–1213. https://doi.org/10.1016/0896-6273(94)90058-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant Number JP15K07149.

Author information

Authors and Affiliations

Authors

Contributions

YF conceived research; YF designed experiments; YF and IT made mutant channels; IT performed electophysiological experiments by TEVC. YF performed electrophysiological experiments by COVC; IT and YF analyzed data; YF performed the homology modeling and the docking simulations. YF wrote a paper; IT and YF approved the final version of the paper.

Corresponding author

Correspondence to Yasuo Furukawa.

Ethics declarations

Ethical approval

All animal experiments were approved by the Hiroshima University Animal Research Committee (No. G20-1), and performed in accordance with the guidelines for the Japanese Association of Laboratory Animal Science and the Animal Experimentation of Hiroshima University.

Competing interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 4127 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furukawa, Y., Tagashira, I. Aromatic amino acids in the finger domain of the FMRFamide-gated Na\(^+\) channel are involved in the FMRFamide recognition and the activation. Pflugers Arch - Eur J Physiol 475, 975–993 (2023). https://doi.org/10.1007/s00424-023-02817-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-023-02817-9

Keywords

Navigation