Skip to main content

Advertisement

Log in

The electrophysiological and behavioral evaluation of the peptide hemopressin and cannabinoid CB1 receptor agonist and antagonist in pentylenetetrazol model of epilepsy in rats

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

This study endeavoured to assess the effect of hemopressin (Hp), a nano peptide obtained from the alpha chain of hemoglobin, on chronic epileptic activity and its potential correlation with cannabinoid receptor type 1 (CB1). Male Wistar albino rats (230–260 g) were used. The kindling process was conducted by administering a sub-convulsant dose of pentylenetetrazol (PTZ) (35 mg/kg, i.p) three times a week for a maximum of 10 weeks. Tripolar electrodes and external cannula guides for intracerebroventricular (i.c.v) injections were surgically implanted in the skulls of kindled rats. On the day of the experiment, doses of Hp, AM-251, and ACEA were administered prior to the PTZ injections. Electroencephalography recordings and behavioural observations were conducted simultaneously for 30 min after the PTZ injection. The administration of Hp (0.6 μg, i.c.v) resulted in a decrease in epileptic activity. The CB1 receptor agonist ACEA (7.5 μg, i.c.v) showed an anticonvulsant effect, but the CB1 receptor antagonist AM-251 (0.5 μg, i.c.v) displayed a proconvulsant effect. The co-administration of Hp (0.6 μg, i.c.v) and ACEA (7.5 μg, i.c.v) and of Hp (0.6 μg, i.c.v) and AM-251 (0.5 μg, i.c.v) produced an anticonvulsant effect. However, when AM-251 was administered prior to Hp, it produced a proconvulsant impact that overrode Hp’s intended anticonvulsant effect. Interestingly, the co-administration of Hp (0.03 μg) + AM-251 (0.125 μg) unexpectedly exhibited an anticonvulsant effect. Electrophysiological and behavioural evaluations demonstrated the anticonvulsant effect of Hp in the present model, highlighting the possibility that Hp may act as an agonist for the CB1 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Agar E (2015) The role of cannabinoids and leptin in neurological diseases. Acta Neurol Scand 132(6):371–380

    Article  CAS  PubMed  Google Scholar 

  2. Al-Gailani L et al (2022) THE effect of general anesthetics on genetic absence epilepsy in WAG/Rij rats. Neurol Res 44(11):995–1005

    Article  CAS  PubMed  Google Scholar 

  3. Arslan G et al (2017) Interaction between urethane and cannabinoid CB1 receptor agonist and antagonist in penicillin-induced epileptiform activity. Acta Neurobiol Exp (Wars) 77(2):128–136

    Article  PubMed  Google Scholar 

  4. Aygun H et al (2020) Hemopressin increases penicillin-induced epileptiform activity in rats. Bratisl Lek Listy 121(1):37–42

    CAS  PubMed  Google Scholar 

  5. Bahremand A et al (2009) Involvement of nitrergic system in the anticonvulsant effect of the cannabinoid CB(1) agonist ACEA in the pentylenetetrazole-induced seizure in mice. Epilepsy Res 84(2–3):110–119

    Article  CAS  PubMed  Google Scholar 

  6. Billakota S, Devinsky O, Marsh E (2019) Cannabinoid therapy in epilepsy. Curr Opin Neurol 32(2):220–226

    Article  CAS  PubMed  Google Scholar 

  7. Blair RE et al (2006) Activation of the cannabinoid type-1 receptor mediates the anticonvulsant properties of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy and status epilepticus. J Pharmacol Exp Ther 317(3):1072–1078

    Article  CAS  PubMed  Google Scholar 

  8. Chen K et al (2007) Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. J Neurosci 27(1):46–58

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cremer CM et al (2009) Pentylenetetrazole-induced seizures affect binding site densities for GABA, glutamate and adenosine receptors in the rat brain. Neuroscience 163(1):490–499

    Article  CAS  PubMed  Google Scholar 

  10. Deshpande LS et al (2007) Endocannabinoids block status epilepticus in cultured hippocampal neurons. Eur J Pharmacol 558(1–3):52–59

    Article  CAS  PubMed  Google Scholar 

  11. Dodd GT et al (2010) The peptide hemopressin acts through CB1 cannabinoid receptors to reduce food intake in rats and mice. J Neurosci 30(21):7369–7376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dodd GT et al (2013) Central functional response to the novel peptide cannabinoid, hemopressin. Neuropharmacology 71:27–36

    Article  CAS  PubMed  Google Scholar 

  13. Echegoyen J et al (2009) Single application of a CB1 receptor antagonist rapidly following head injury prevents long-term hyperexcitability in a rat model. Epilepsy Res 85(1):123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ekonomou A, Smith AL, Angelatou F (2001) Changes in AMPA receptor binding and subunit messenger RNA expression in hippocampus and cortex in the pentylenetetrazole-induced “kindling” model of epilepsy. Brain Res Mol Brain Res 95(1–2):27–35

    Article  CAS  PubMed  Google Scholar 

  15. Emendato A et al (2018) Disordered Peptides Looking for Their Native Environment: Structural Basis of CB1 Endocannabinoid Receptor Binding to Pepcans. Front Mol Biosci 5:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fischer W, Kittner H (1998) Influence of ethanol on the pentylenetetrazol-induced kindling in rats. J Neural Transm (Vienna) 105(10–12):1129–1142

    Article  CAS  PubMed  Google Scholar 

  17. Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83(3):1017–1066

    Article  CAS  PubMed  Google Scholar 

  18. Gholizadeh S et al (2007) Ultra-low dose cannabinoid antagonist AM251 enhances cannabinoid anticonvulsant effects in the pentylenetetrazole-induced seizure in mice. Neuropharmacology 53(6):763–770

    Article  CAS  PubMed  Google Scholar 

  19. Hama A, Sagen J (2011) Centrally mediated antinociceptive effects of cannabinoid receptor ligands in rat models of nociception. Pharmacol Biochem Behav 100(2):340–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heimann AS et al (2007) Hemopressin is an inverse agonist of CB1 cannabinoid receptors. Proc Natl Acad Sci U S A 104(51):20588–20593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heimann AS et al (2021) Hemopressin as a breakthrough for the cannabinoid field. Neuropharmacology 183:108406

    Article  CAS  PubMed  Google Scholar 

  22. Hoffman AF, Lupica CR (2000) Mechanisms of cannabinoid inhibition of GABA(A) synaptic transmission in the hippocampus. J Neurosci 20(7):2470–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karr L, Pan YZ, Rutecki PA (2010) CB1 receptor antagonism impairs the induction of epileptiform activity by group I metabotropic glutamate receptor activation. Epilepsia 51 Suppl 3(Suppl 3):121–5

  24. Katona I et al (2006) Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci 26(21):5628–5637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Katona I, Freund TF (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14(9):923–930

    Article  CAS  PubMed  Google Scholar 

  26. Kozan R, Ayyildiz M, Agar E (2009) The effects of intracerebroventricular AM-251, a CB1-receptor antagonist, and ACEA, a CB1-receptor agonist, on penicillin-induced epileptiform activity in rats. Epilepsia 50(7):1760–1767

    Article  CAS  PubMed  Google Scholar 

  27. Pan JX et al (2014) Analgesic tolerance and cross-tolerance to the cannabinoid receptors ligands hemopressin, VD-hemopressin(α) and WIN55,212–2 at the supraspinal level in mice. Neurosci Lett 578:187–191

    Article  CAS  PubMed  Google Scholar 

  28. Pertwee RG (2010) Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr Med Chem 17(14):1360–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Remigio GJ et al (2017) Corneal kindled C57BL/6 mice exhibit saturated dentate gyrus long-term potentiation and associated memory deficits in the absence of overt neuron loss. Neurobiol Dis 105:221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rocha L, Ackermann RF, Engel J Jr (1996) Chronic and single administration of pentylenetetrazol modifies benzodiazepine receptor-binding: an autoradiographic study. Epilepsy Res 24(2):65–72

    Article  CAS  PubMed  Google Scholar 

  31. Scrima M et al (2010) Binding of the hemopressin peptide to the cannabinoid CB1 receptor: structural insights. Biochemistry 49(49):10449–10457

    Article  CAS  PubMed  Google Scholar 

  32. Sieradzan KA et al (2001) Cannabinoids reduce levodopa-induced dyskinesia in Parkinson’s disease: a pilot study. Neurology 57(11):2108–2111

    Article  CAS  PubMed  Google Scholar 

  33. van Rijn CM et al (2011) Endocannabinoid system protects against cryptogenic seizures. Pharmacol Rep 63(1):165–168

    Article  PubMed  Google Scholar 

  34. Wallace MJ, Martin BR, DeLorenzo RJ (2002) Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol 452(3):295–301

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) [project number 215S808]. The funding source had no involvement in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

AA., LA., HA, and AH: Conducted the experiments. YK, SI, and MA: Analyzed the data. EA and AA: Wrote the manuscript. EA: Planned and supervised all experiments.

Corresponding author

Correspondence to Ali Al-Kaleel.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose other than the funding source (The Scientific and Technological Research Council of Turkey (TUBITAK) [project number 215S808]) mentioned in the section above.

Ethics approval

The experimental procedures were conducted following the European Union Directive (2010/63/EU) and the Turkish Legislations Acts of experimental animals. The study protocol was approved by the Local Ethical Committee of Ondokuz Mayis University (2015/55).

Consent to participate

Not applicable.

Patient consent

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Kaleel, A., Aygun, H., Al-Gailani, L. et al. The electrophysiological and behavioral evaluation of the peptide hemopressin and cannabinoid CB1 receptor agonist and antagonist in pentylenetetrazol model of epilepsy in rats. Pflugers Arch - Eur J Physiol 475, 719–730 (2023). https://doi.org/10.1007/s00424-023-02814-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-023-02814-y

Keywords

Navigation