Skip to main content
Log in

Purinergic signaling is essential for full Psickle activation by hypoxia and by normoxic acid pH in mature human sickle red cells and in vitro-differentiated cultured human sickle reticulocytes

  • Signaling and cell physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Paracrine ATP release by erythrocytes has been shown to regulate endothelial cell function via purinergic signaling, and this erythoid-endothelial signaling network is pathologically dysregulated in sickle cell disease. We tested the role of extracellular ATP-mediated purinergic signaling in the activation of Psickle, the mechanosensitive Ca2+-permeable cation channel of human sickle erythrocytes (SS RBC). Psickle activation increases intracellular [Ca2+] to stimulate activity of the RBC Gardos channel, KCNN4/KCa3.1, leading to cell shrinkage and accelerated deoxygenation-activated sickling.

We found that hypoxic activation of Psickle recorded by cell-attached patch clamp in SS RBC is inhibited by extracellular apyrase, which hydrolyzes extracellular ATP. Hypoxic activation of Psickle was also inhibited by the pannexin-1 inhibitor, probenecid, and by the P2 antagonist, suramin. A Psickle-like activity was also activated in normoxic SS RBC (but not in control red cells) by bath pH 6.0. Acid-activated Psickle-like activity was similarly blocked by apyrase, probenecid, and suramin, as well as by the Psickle inhibitor, Grammastola spatulata mechanotoxin-4 (GsMTx-4).

In vitro-differentiated cultured human sickle reticulocytes (SS cRBC), but not control cultured reticulocytes, also exhibited hypoxia-activated Psickle activity that was abrogated by GsMTx-4. Psickle-like activity in SS cRBC was similarly elicited by normoxic exposure to acid pH, and this acid-stimulated activity was nearly completely blocked by apyrase, probenecid, and suramin, as well as by GsMTx-4.

Thus, hypoxia-activated and normoxic acid-activated cation channel activities are expressed in both SS RBC and SS cRBC, and both types of activation appear to be mediated or greatly amplified by autocrine or paracrine purinergic signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Abraham AA, Tisdale JF (2021) Gene therapy for sickle cell disease—moving from the bench to the bedside. Blood. https://doi.org/10.1182/blood.2019003776

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adebiyi MG, Manalo JM, Xia Y (2019) Metabolomic and molecular insights into sickle cell disease and innovative therapies. Blood Adv 3:1347–1355. https://doi.org/10.1182/bloodadvances.2018030619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Al Balushi H, Hannemann A, Rees D, Brewin J, Gibson JS (2019) The effect of antioxidants on the properties of red blood cells from patients with sickle cell anemia. Front Physiol 10:976. https://doi.org/10.3389/fphys.2019.00976

    Article  PubMed  PubMed Central  Google Scholar 

  4. Algeelani S, Alam N, Hossain MA, Mikus G, Greenblatt DJ (2018) In vitro inhibition of human UGT isoforms by ritonavir and cobicistat. Xenobiotica 48:764–769. https://doi.org/10.1080/00498254.2017.1370655

    Article  CAS  PubMed  Google Scholar 

  5. Andolfo I, Russo R, Manna F, Shmukler BE, Gambale A, Vitiello G, De Rosa G, Brugnara C, Alper SL, Snyder LM, Iolascon A (2015) Novel Gardos channel mutations linked to dehydrated hereditary stomatocytosis (xerocytosis). Am J Hematol 90:921–926. https://doi.org/10.1002/ajh.24117

    Article  CAS  PubMed  Google Scholar 

  6. Ataga KI, Reid M, Ballas SK, Yasin Z, Bigelow C, James LS, Smith WR, Galacteros F, Kutlar A, Hull JH, Stocker JW, Investigators ICAS (2011) Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043). Br J Haematol 153:92–104. https://doi.org/10.1111/j.1365-2141.2010.08520.x

    Article  CAS  PubMed  Google Scholar 

  7. Bae C, Sachs F, Gottlieb PA (2015) Protonation of the human PIEZO1 ion channel stabilizes inactivation. J Biol Chem 290:5167–5173. https://doi.org/10.1074/jbc.M114.604033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bei AK, Brugnara C, Duraisingh MT (2010) In vitro genetic analysis of an erythrocyte determinant of malaria infection. J Infect Dis 202:1722–1727. https://doi.org/10.1086/657157

    Article  PubMed  PubMed Central  Google Scholar 

  9. Belkacemi A, Trost CF, Tinschert R, Flormann D, Malihpour M, Wagner C, Meyer MR, Beck A, Flockerzi V (2021) The TRPV2 channel mediates Ca2+ influx and the Delta9-THC-dependent decrease in osmotic fragility in red blood cells. Haematologica 106:2246–2250. https://doi.org/10.3324/haematol.2020.274951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bergfeld GR, Forrester T (1992) Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res 26:40–47. https://doi.org/10.1093/cvr/26.1.40

    Article  CAS  PubMed  Google Scholar 

  11. Brugnara C (2018) Sickle cell dehydration: pathophysiology and therapeutic applications. Clin Hemorheol Microcirc 68:187–204. https://doi.org/10.3233/CH-189007

    Article  CAS  PubMed  Google Scholar 

  12. Cahalan SM, Lukacs V, Ranade SS, Chien S, Bandell M, Patapoutian A (2015) Piezo1 links mechanical forces to red blood cell volume. Elife 4.https://doi.org/10.7554/eLife.07370

  13. Cinar E, Zhou S, DeCourcey J, Wang Y, Waugh RE, Wan J (2015) Piezo1 regulates mechanotransductive release of ATP from human RBCs. Proc Natl Acad Sci U S A 112:11783–11788. https://doi.org/10.1073/pnas.1507309112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eaton WA (2021) Impact of hemoglobin biophysical studies on molecular pathogenesis and drug therapy for sickle cell disease. Mol Aspects Med:100971. https://doi.org/10.1016/j.mam.2021.100971

  15. Ellsworth ML, Forrester T, Ellis CG, Dietrich HH (1995) The erythrocyte as a regulator of vascular tone. Am J Physiol 269:H2155-2161. https://doi.org/10.1152/ajpheart.1995.269.6.H2155

    Article  CAS  PubMed  Google Scholar 

  16. Evans EL, Povstyan OV, De Vecchis D, Macrae F, Lichtenstein L, Futers TS, Parsonage G, Humphreys NE, Adamson A, Kalli AC, Ludlow MJ, Beech DJ (2020) RBCs prevent rapid PIEZO1 inactivation and expose slow deactivation as a mechanism of dehydrated hereditary stomatocytosis. Blood 136:140–144. https://doi.org/10.1182/blood.2019004174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferguson BS, Neidert LE, Rogatzki MJ, Lohse KR, Gladden LB, Kluess HA (2021) Red blood cell ATP release correlates with red blood cell hemolysis. Am J Physiol Cell Physiol 321:C761–C769. https://doi.org/10.1152/ajpcell.00510.2020

    Article  CAS  PubMed  Google Scholar 

  18. Field JJ, Nathan DG, Linden J (2014) The role of adenosine signaling in sickle cell therapeutics. Hematol Oncol Clin North Am 28:287–299. https://doi.org/10.1016/j.hoc.2013.11.003

    Article  PubMed  PubMed Central  Google Scholar 

  19. Giarratana MC, Kobari L, Lapillonne H, Chalmers D, Kiger L, Cynober T, Marden MC, Wajcman H, Douay L (2005) Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 23:69–74. https://doi.org/10.1038/nbt1047

    Article  CAS  PubMed  Google Scholar 

  20. Hanouna G, Tang E, Perez J, Vandermeersch S, Haymann JP, Baud L, Letavernier E (2020) Preventing calpain externalization by reducing ABCA1 activity with probenecid limits melanoma angiogenesis and development. J Invest Dermatol 140:445–454. https://doi.org/10.1016/j.jid.2019.06.148

    Article  CAS  PubMed  Google Scholar 

  21. Itano HA, Pauling L (1949) A rapid diagnostic test for sickle cell anemia. Blood 4:66–68

    Article  CAS  Google Scholar 

  22. Jacobson KA, Ivanov AA, de Castro S, Harden TK, Ko H (2009) Development of selective agonists and antagonists of P2Y receptors. Purinergic Signal 5:75–89. https://doi.org/10.1007/s11302-008-9106-2

    Article  CAS  PubMed  Google Scholar 

  23. Joiner CH, Jiang M, Franco RS (1995) Deoxygenation-induced cation fluxes in sickle cells. IV. Modulation by external calcium. Am J Physiol 269:C403-409. https://doi.org/10.1152/ajpcell.1995.269.2.C403

    Article  CAS  PubMed  Google Scholar 

  24. Joiner CH, Morris CL, Cooper ES (1993) Deoxygenation-induced cation fluxes in sickle cells. III. Cation selectivity and response to pH and membrane potential. Am J Physiol 264:C734-744. https://doi.org/10.1152/ajpcell.1993.264.3.C734

    Article  CAS  PubMed  Google Scholar 

  25. Kirby BS, Sparks MA, Lazarowski ER, Lopez Domowicz DA, Zhu H, McMahon TJ (2021) Pannexin 1 channels control the hemodynamic response to hypoxia by regulating O2-sensitive extracellular ATP in blood. Am J Physiol Heart Circ Physiol 320:H1055–H1065. https://doi.org/10.1152/ajpheart.00651.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koval A, Ahmed K, Katanaev VL (2016) Inhibition of Wnt signalling and breast tumour growth by the multi-purpose drug suramin through suppression of heterotrimeric G proteins and Wnt endocytosis. Biochem J 473:371–381. https://doi.org/10.1042/BJ20150913

    Article  CAS  PubMed  Google Scholar 

  27. Lazarowski ER (2012) Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal 8:359–373. https://doi.org/10.1007/s11302-012-9304-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Linden J, Koch-Nolte F, Dahl G (2019) Purine release, metabolism, and signaling in the inflammatory response. Annu Rev Immunol 37:325–347. https://doi.org/10.1146/annurev-immunol-051116-052406

    Article  CAS  PubMed  Google Scholar 

  29. Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci U S A 103:7655–7659. https://doi.org/10.1073/pnas.0601037103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lopez X, Palacios-Prado N, Guiza J, Escamilla R, Fernandez P, Vega JL, Rojas M, Marquez-Miranda V, Chamorro E, Cardenas AM, Maldifassi MC, Martinez AD, Duarte Y, Gonzalez-Nilo FD, Saez JC (2021) A physiologic rise in cytoplasmic calcium ion signal increases pannexin1 channel activity via a C-terminus phosphorylation by CaMKII. Proc Natl Acad Sci U S A 118.https://doi.org/10.1073/pnas.2108967118

  31. Lukacs V, Mathur J, Mao R, Bayrak-Toydemir P, Procter M, Cahalan SM, Kim HJ, Bandell M, Longo N, Day RW, Stevenson DA, Patapoutian A, Krock BL (2015) Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat Commun 6:8329. https://doi.org/10.1038/ncomms9329

    Article  CAS  PubMed  Google Scholar 

  32. Ma YL, Rees DC, Gibson JS, Ellory JC (2012) The conductance of red blood cells from sickle cell patients: ion selectivity and inhibitors. J Physiol 590:2095–2105. https://doi.org/10.1113/jphysiol.2012.229609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mancuso JE, Jayaraman A, Ristenpart WD (2018) Centrifugation-induced release of ATP from red blood cells. PLoS One 13:e0203270. https://doi.org/10.1371/journal.pone.0203270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mim C, Perkins G, Dahl G (2021) Structure versus function: are new conformations of pannexin 1 yet to be resolved? J Gen Physiol 153.https://doi.org/10.1085/jgp.202012754

  35. Mousawi F, Peng H, Li J, Ponnambalam S, Roger S, Zhao H, Yang X, Jiang LH (2020) Chemical activation of the Piezo1 channel drives mesenchymal stem cell migration via inducing ATP release and activation of P2 receptor purinergic signaling. Stem Cells 38:410–421. https://doi.org/10.1002/stem.3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Narahari AK, Kreutzberger AJ, Gaete PS, Chiu YH, Leonhardt SA, Medina CB, Jin X, Oleniacz PW, Kiessling V, Barrett PQ, Ravichandran KS, Yeager M, Contreras JE, Tamm LK, Bayliss DA (2021) ATP and large signaling metabolites flux through caspase-activated Pannexin 1 channels. Elife 10.https://doi.org/10.7554/eLife.64787

  37. Redegeld FA, Caldwell CC, Sitkovsky MV (1999) Ecto-protein kinases: ecto-domain phosphorylation as a novel target for pharmacological manipulation? Trends Pharmacol Sci 20:453–459. https://doi.org/10.1016/s0165-6147(99)01399-1

    Article  CAS  PubMed  Google Scholar 

  38. Richardson KJ, Kuck L, Simmonds MJ (2020) Beyond oxygen transport: active role of erythrocytes in the regulation of blood flow. Am J Physiol Heart Circ Physiol 319:H866–H872. https://doi.org/10.1152/ajpheart.00441.2020

    Article  CAS  PubMed  Google Scholar 

  39. Rooks H, Brewin J, Gardner K, Chakravorty S, Menzel S, Hannemann A, Gibson J, Rees DC (2019) A gain of function variant in PIEZO1 (E756del) and sickle cell disease. Haematologica 104:e91–e93. https://doi.org/10.3324/haematol.2018.202697

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sahu D, Sharma S, Singla RK, Panda AK (2017) Antioxidant activity and protective effect of suramin against oxidative stress in collagen induced arthritis. Eur J Pharm Sci 101:125–139. https://doi.org/10.1016/j.ejps.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  41. Salinas Cisneros G, Thein SL (2021) Research in sickle cell disease: from bedside to bench to bedside. Hemasphere 5:e584. https://doi.org/10.1097/HS9.0000000000000584

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sawatani T, Kaneko YK, Doutsu I, Ogawa A, Ishikawa T (2019) TRPV2 channels mediate insulin secretion induced by cell swelling in mouse pancreatic beta-cells. Am J Physiol Cell Physiol 316:C434–C443. https://doi.org/10.1152/ajpcell.00210.2017

    Article  CAS  PubMed  Google Scholar 

  43. Serjeant GR (2013) The natural history of sickle cell disease. Cold Spring Harb Perspect Med 3:a011783. https://doi.org/10.1101/cshperspect.a011783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sikora J, Orlov SN, Furuya K, Grygorczyk R (2014) Hemolysis is a primary ATP-release mechanism in human erythrocytes. Blood 124:2150–2157. https://doi.org/10.1182/blood-2014-05-572024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Skals M, Jorgensen NR, Leipziger J, Praetorius HA (2009) Alpha-hemolysin from Escherichia coli uses endogenous amplification through P2X receptor activation to induce hemolysis. Proc Natl Acad Sci U S A 106:4030–4035. https://doi.org/10.1073/pnas.0807044106

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sluyter R (2015) P2X and P2Y receptor signaling in red blood cells. Front Mol Biosci 2:60. https://doi.org/10.3389/fmolb.2015.00060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Snyder LM, Sauberman N, Condara H, Dolan J, Jacobs J, Szymanski I, Fortier NL (1981) Red cell membrane response to hydrogen peroxide-sensitivity in hereditary xerocytosis and in other abnormal red cells. Br J Haematol 48:435–444. https://doi.org/10.1111/j.1365-2141.1981.tb02735.x

    Article  CAS  PubMed  Google Scholar 

  48. Sprague RS, Ellsworth ML, Stephenson AH, Lonigro AJ (1996) ATP: the red blood cell link to NO and local control of the pulmonary circulation. Am J Physiol 271:H2717-2722. https://doi.org/10.1152/ajpheart.1996.271.6.H2717

    Article  CAS  PubMed  Google Scholar 

  49. Sprague RS, Ellsworth ML, Stephenson AH, Lonigro AJ (2001) Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release. Am J Physiol Cell Physiol 281:C1158-1164. https://doi.org/10.1152/ajpcell.2001.281.4.C1158

    Article  CAS  PubMed  Google Scholar 

  50. Sridharan M, Adderley SP, Bowles EA, Egan TM, Stephenson AH, Ellsworth ML, Sprague RS (2010) Pannexin 1 is the conduit for low oxygen tension-induced ATP release from human erythrocytes. Am J Physiol Heart Circ Physiol 299:H1146-1152. https://doi.org/10.1152/ajpheart.00301.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tan JJ, Ponomarchuk O, Grygorczyk R, Boudreault F (2019) Wide field of view quantitative imaging of cellular ATP release. Am J Physiol Cell Physiol 317:C566–C575. https://doi.org/10.1152/ajpcell.00096.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tayel A, Abd El Galil KH, Ebrahim MA, Ibrahim AS, El-Gayar AM, Al-Gayyar MM (2014) Suramin inhibits hepatic tissue damage in hepatocellular carcinoma through deactivation of heparanase enzyme. Eur J Pharmacol 728:151–160. https://doi.org/10.1016/j.ejphar.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  53. Vandorpe DH, Xu C, Shmukler BE, Otterbein LE, Trudel M, Sachs F, Gottlieb PA, Brugnara C, Alper SL (2010) Hypoxia activates a Ca2+-permeable cation conductance sensitive to carbon monoxide and to GsMTx-4 in human and mouse sickle erythrocytes. PLoS One 5:e8732. https://doi.org/10.1371/journal.pone.0008732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vogt AM, Winter G, Wahlgren M, Spillmann D (2004) Heparan sulphate identified on human erythrocytes: a plasmodium falciparum receptor. Biochem J 381:593–597. https://doi.org/10.1042/BJ20040762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang L, Olivecrona G, Gotberg M, Olsson ML, Winzell MS, Erlinge D (2005) ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circ Res 96:189–196. https://doi.org/10.1161/01.RES.0000153670.07559.E4

    Article  CAS  PubMed  Google Scholar 

  56. Ware RE, de Montalembert M, Tshilolo L, Abboud MR (2017) Sickle cell disease. Lancet 390:311–323. https://doi.org/10.1016/S0140-6736(17)30193-9

    Article  PubMed  Google Scholar 

  57. Wei L, Mousawi F, Li D, Roger S, Li J, Yang X, Jiang LH (2019) Adenosine triphosphate release and P2 receptor signaling in Piezo1 channel-dependent mechanoregulation. Front Pharmacol 10:1304. https://doi.org/10.3389/fphar.2019.01304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yalak G, Ehrlich YH, Olsen BR (2014) Ecto-protein kinases and phosphatases: an emerging field for translational medicine. J Transl Med 12:165. https://doi.org/10.1186/1479-5876-12-165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yun J (2008) Suramin. In: Enna SJaB, DB (ed) xPharm: the comprehensive pharmacology reference

Download references

Acknowledgements

We thank Boris Shmukler, Cristof Gruring, Elizabeth Egan, Mudit Chaand, Mischka Moechter, and Jale Manzo for technical assistance.

Funding

This work was funded by a grant from the Doris Duke Charitable Trust to Seth L. Alper and to Manoj T. Duraisingh, and by support from Quest Diagnostics to Seth L. Alper. Seth L. Alper was funded by the Doris Duke Charitable Trust and by Quest Diagnostics. Manoj Duraisingh was funded by the Doris Duke Charitable Trust.

Data and materials will be made available upon request to the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth L. Alper.

Ethics declarations

Competing interests

Jay G. Wohlgemuth and Jeffrey S. Dlott are employees and shareholders of Quest Diagnostics. Seth L. Alper and L. Michael Snyder are consultants to Quest Diagnostics. Seth L. Alper and Carlo Brugnara are recipients of research funding from Quest Diagnostics.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Physiological relevance

Purinergic signaling mediates or amplifies activation of Psickle by hypoxia and by normoxic acid pH in human sickle RBC and in cultured reticulocytes differentiated in vitro from CD34 + sickle erythroid precursors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandorpe, D.H., Rivera, A., Ganter, M. et al. Purinergic signaling is essential for full Psickle activation by hypoxia and by normoxic acid pH in mature human sickle red cells and in vitro-differentiated cultured human sickle reticulocytes. Pflugers Arch - Eur J Physiol 474, 553–565 (2022). https://doi.org/10.1007/s00424-022-02665-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-022-02665-z

Keywords

Navigation