Skip to main content

Cellular pathology of the human heart in Duchenne muscular dystrophy (DMD): lessons learned from in vitro modeling

Abstract

Duchenne muscular dystrophy is a genetic disorder where an X-linked mutation in the DMD gene initiates pathogenic development caused by the absence of dystrophin protein. This impacts primarily the evolution of a functional muscle tissue resulting in muscle weakness and later severe disability in young male patients leading to an early death. Patients in the final stage develop dilated cardiomyopathy leading ultimately to cardiac or respiratory failure as the cause of death. This review discusses recent advances in modeling the DMD pathology in vitro. It describes in detail the molecular abnormalities found on the cellular and organoid levels. The in vitro pathology is compared to that found in patients. Likewise, the drawbacks and limitations of current models are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Aartsma-Rus A, Van Deutekom J, Fokkema I, Van Ommen G, Den Dunnen J (2006) Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 34. https://doi.org/10.1002/MUS.20586

  2. 2.

    Abdel Aleem A, Elsaid MF, Chalhoub N, Chakroun A, Mohamed KAS, AlShami R, Kuzu O, Mohamed RB, Ibrahim K, AlMudheki N, Osman O, Ross ME, ELalamy O (2020) Clinical and genomic characteristics of LAMA2 related congenital muscular dystrophy in a patients’ cohort from Qatar. A population specific founder variant. Neuromuscul Disord 30:457–471. https://doi.org/10.1016/j.nmd.2020.03.009

    Article  PubMed  Google Scholar 

  3. 3.

    Acimovic I, Refaat M, Moreau A, Salykin A, Reiken S, Sleiman Y, Souidi M, Přibyl J, Kajava A, Richard S, Lu J, Chevalier P, Skládal P, Dvořak P, Rotrekl V, Marks A, Scheinman M, Lacampagne A, Meli A (2018) Post-translational modifications and diastolic calcium leak associated to the novel RyR2-D3638A mutation lead to CPVT in patient-specific hiPSC-derived cardiomyocytes. J Clin Med 7:423. https://doi.org/10.3390/jcm7110423

    CAS  Article  PubMed Central  Google Scholar 

  4. 4.

    Adams ME, Odom GL, Kim MJ, Chamberlain JS, Froehner SC (2018) Syntrophin binds directly to multiple spectrin-like repeats in dystrophin and mediates binding of nNOS to repeats 16–17. Hum Mol Genet 27:2978. https://doi.org/10.1093/HMG/DDY197

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Adkison LR (ed) (2012) Elsevier’s integrated Review Genetics (3rd edn). Elsevier Saunders, Amsterdam

  6. 6.

    AG I, K C, E M (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem cell reports 2. https://doi.org/10.1016/J.STEMCR.2014.04.006

  7. 7.

    Amedro P, Vincenti M, La VGD, Lavastre K, Barrea C, Guillaumont S, Bredy C, Gamon L, Meli AC, Cazorla O, Fauconnier J, Meyer P, Rivier F, Adda J, Mura T, Lacampagne A (2019) Speckle-tracking echocardiography in children with duchenne muscular dystrophy: a prospective multicenter controlled cross-sectional study. J Am Soc Echocardiogr 32:412–422. https://doi.org/10.1016/J.ECHO.2018.10.017

    Article  PubMed  Google Scholar 

  8. 8.

    Aminzadeh MA, Tseliou E, Sun B, Cheng K, Malliaras K, Makkar RR, Marbán E (2015) Therapeutic efficacy of cardiosphere-derived cells in a transgenic mouse model of non-ischaemic dilated cardiomyopathy. Eur Heart J 36:751–762. https://doi.org/10.1093/eurheartj/ehu196

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Andreakis N, D’Aniello S, Albalat R, Patti FP, Garcia-Fernndez J, Procaccini G, Sordino P, Palumbo A (2011) Evolution of the nitric oxide synthase family in metazoans. Mol Biol Evol 28:163–179. https://doi.org/10.1093/molbev/msq179

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Asp ML, Martindale JJ, Heinis FI, Wang W, Metzger JM (2013) Calcium mishandling in diastolic dysfunction: mechanisms and potential therapies. Biochim Biophys Acta - Mol Cell Res 1833:895–900. https://doi.org/10.1016/J.BBAMCR.2012.09.007

    CAS  Article  Google Scholar 

  11. 11.

    Barthélémy F, Wang RT, Hsu C, Douine ED, Marcantonio EE, Nelson SF, Miceli MC (2019) Targeting RyR activity boosts antisense exon 44 and 45 skipping in human DMD skeletal or cardiac muscle culture models. Mol Ther Nucleic Acids 18:580–589. https://doi.org/10.1016/j.omtn.2019.09.020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Bassett DI, Bryson-Richardson RJ, Daggett DF, Gautier P, Keenan DG, Currie PD (2003) Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development 116:721–730. https://doi.org/10.1242/dev.00799

    CAS  Article  Google Scholar 

  13. 13.

    Belloni E, De Cobelli F, Esposito A, Mellone R, Perseghin G, Canu T, Del Maschio A (2008) MRI of cardiomyopathy. Am J Roentgenol 191:1702–1710. https://doi.org/10.2214/AJR.07.3997

    Article  Google Scholar 

  14. 14.

    Van Den Berg CW, Okawa S, De Sousa C, Lopes SM, Van Iperen L, Passier R, Braam SR, Tertoolen LG, Del Sol A, Davis RP, Mummery CL (2015) Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Dev 142:3231–3238. https://doi.org/10.1242/dev.123810

    CAS  Article  Google Scholar 

  15. 15.

    van den Bergen JC, Wokke BH, Janson AA, van Duinen SG, Hulsker MA, Ginjaar HB, van Deutekom JC, Aartsma-Rus A, Kan HE, Verschuuren JJ (2014) Dystrophin levels and clinical severity in Becker muscular dystrophy patients. J Neurol Neurosurg Psychiatry 85:747–753. https://doi.org/10.1136/jnnp-2013-306350

    Article  PubMed  Google Scholar 

  16. 16.

    van Berlo J, Kanisicak O, Maillet M, Vagnozzi R, Karch J, Lin S, Middleton R, Marbán E, Molkentin J (2014) c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509. doi: https://doi.org/10.1038/NATURE13309

  17. 17.

    Bilchick KC, Salerno M, Plitt D, Dori Y, Crawford TO, Drachman D, Thompson WR (2011) Prevalence and distribution of regional scar in dysfunctional myocardial segments in Duchenne muscular dystrophy. J Cardiovasc Magn Reson 13:20. https://doi.org/10.1186/1532-429X-13-20

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Colvin MK, Cripe L, Herron AR, Kennedy A, Kinnett K, Naprawa J, Noritz G, Poysky J, Street N, Trout CJ, Weber DR, Ward LM, DMD Care Considerations Working Group (2018) Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol 17:445–455. https://doi.org/10.1016/S1474-4422(18)30026-7

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329. https://doi.org/10.1152/physrev.00028.2001

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Boldrin L, Zammit PS, Morgan JE (2015) Satellite cells from dystrophic muscle retain regenerative capacity. Stem Cell Res 14:20–29. https://doi.org/10.1016/j.scr.2014.10.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Boyer JG, Han S, Prasad V, Khalil H, Vagnozzi RJ, Molkentin JD (2019) Satellite cell depletion in early adulthood attenuates muscular dystrophy pathogenesis. bioRxiv 857433. https://doi.org/10.1101/857433

  22. 22.

    Branco MA, Cotovio JP, Rodrigues CAV, Vaz SH, Fernandes TG, Moreira LM, Cabral JMS, Diogo MM (2019) Transcriptomic analysis of 3D cardiac differentiation of human induced pluripotent stem cells reveals faster cardiomyocyte maturation compared to 2D culture. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-45047-9

    CAS  Article  Google Scholar 

  23. 23.

    Brenman J, Chao D, Xia H, Aldape K, Bredt D (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82. https://doi.org/10.1016/0092-8674(95)90471-9

  24. 24.

    Brusa R, Magri F, Bresolin N, Comi G Pietro, Corti S (2020) Noncoding RNAs in Duchenne and Becker muscular dystrophies: role in pathogenesis and future prognostic and therapeutic perspectives. Cell Mol Life Sci 1–15. https://doi.org/10.1007/s00018-020-03537-4

  25. 25.

    Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin C, DMD Care Considerations Working Group (2010) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9:77–93. https://doi.org/10.1016/S1474-4422(09)70271-6

    Article  PubMed  Google Scholar 

  26. 26.

    Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin C, DMD Care Considerations Working Group (2010) Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol 9:177–89. https://doi.org/10.1016/S1474-4422(09)70272-8

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Byers TJ, Lidov HGW, Kunkel LM (1993) An alternative dystrophin transcript specific to peripheral nerve. Nat Genet 4:77–81. https://doi.org/10.1038/ng0593-77

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Caluori G, Pribyl J, Pesl M, Jelinkova S, Rotrekl V, Skladal P, Raiteri R (2019) Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models. Biosens Bioelectron 124–125:129–135. https://doi.org/10.1016/J.BIOS.2018.10.021

    Article  PubMed  Google Scholar 

  29. 29.

    Capitanio D, Moriggi M, Torretta E, Barbacini P, De Palma S, Viganò A, Lochmüller H, Muntoni F, Ferlini A, Mora M, Gelfi C (2020) Comparative proteomic analyses of Duchenne muscular dystrophy and Becker muscular dystrophy muscles: changes contributing to preserve muscle function in Becker muscular dystrophy patients. J Cachexia Sarcopenia Muscle 11:547–563. https://doi.org/10.1002/jcsm.12527

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Caputo L, Granados A, Lenzi J, Rosa A, Ait-Si-Ali S, Puri PL, Albini S (2020) Acute conversion of patient-derived Duchenne muscular dystrophy iPSC into myotubes reveals constitutive and inducible over-activation of TGFβ-dependent pro-fibrotic signaling. Skelet Muscle 10:13. https://doi.org/10.1186/s13395-020-00224-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Chamberlain JS, Metzger J, Reyes M, Townsend D, Faulkner JA (2007) Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J 21:2195–2204. https://doi.org/10.1096/fj.06-7353com

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Chimenti I, Smith RR, Li T-S, Gerstenblith G, Messina E, Giacomello A, Marbán E (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106:971. https://doi.org/10.1161/CIRCRESAHA.109.210682

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche containing several hundred myonuclei within a con-tinuous cytoplasm. Mammalian myonuclei are terminally Cell 122:289–301. https://doi.org/10.1016/j.cell.2005.05.010

    CAS  Article  Google Scholar 

  34. 34.

    Coolen BF, Geelen T, Paulis LEM, Nauerth A, Nicolay K, Strijkers GJ (2011) Three-dimensional T1 mapping of the mouse heart using variable flip angle steady-state MR imaging. NMR Biomed 24:154–162. https://doi.org/10.1002/nbm.1566

    Article  PubMed  Google Scholar 

  35. 35.

    Cui C, Wang J, Qian D, Huang J, Lin J, Kingshott P, Wang PY, Chen M (2019) Binary colloidal crystals drive spheroid formation and accelerate maturation of human-induced pluripotent stem cell-derived cardiomyocytes. ACS Appl Mater Interfaces 11:3679–3689. https://doi.org/10.1021/acsami.8b17090

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    D’Amario D, Amodeo A, Adorisio R, Tiziano FD, Leone AM, Perri G, Bruno P, Massetti M, Ferlini A, Pane M, Niccoli G, Porto I, D’Angelo GA, Borovac JA, Mercuri E, Crea F (2017) A current approach to heart failure in Duchenne muscular dystrophy. Heart 103:1770–1779. https://doi.org/10.1136/heartjnl-2017-311269

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    D T, S Y, J M (2007) Cardiomyopathy of Duchenne muscular dystrophy: pathogenesis and prospect of membrane sealants as a new therapeutic approach. Expert Rev Cardiovasc Ther 5. https://doi.org/10.1586/14779072.5.1.99

  38. 38.

    Danialou G, Comtois AS, Dudley R, Karpati G, Vincent G, Des Rosiers C, Petrof BJ (2001) Dystrophin-deficient cardiomyocytes are abnormally vulnerable to mechanical stress-induced contractile failure and injury. FASEB J 15:1655–1657. https://doi.org/10.1096/fj.01-0030fje

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M, Perlingeiro RCR (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10:610–619. https://doi.org/10.1016/j.stem.2012.02.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Denning C, Borgdorff V, Crutchley J, Firth KSA, George V, Kalra S, Kondrashov A, Hoang MD, Mosqueira D, Patel A, Prodanov L, Rajamohan D, Skarnes WC, Smith JGW, Young LE (2016) Cardiomyocytes from human pluripotent stem cells: from laboratory curiosity to industrial biomedical platform. Biochim Biophys Acta - Mol Cell Res 1863:1728–1748. https://doi.org/10.1016/j.bbamcr.2015.10.014

    CAS  Article  Google Scholar 

  41. 41.

    Duddy W, Duguez S, Johnston H, Cohen TV, Phadke A, Gordish-Dressman H, Nagaraju K, Gnocchi V, Low SH, Partridge T (2015) Muscular dystrophy in the mdx mouse is a severe myopathy compounded by hypotrophy, hypertrophy and hyperplasia. Skelet Muscle 5:16. https://doi.org/10.1186/s13395-015-0041-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Eisen B, Ben Jehuda R, Cuttitta AJ, Mekies LN, Shemer Y, Baskin P, Reiter I, Willi L, Freimark D, Gherghiceanu M, Monserrat L, Scherr M, Hilfiker-Kleiner D, Arad M, Michele DE, Binah O (2019) Electrophysiological abnormalities in induced pluripotent stem cell-derived cardiomyocytes generated from Duchenne muscular dystrophy patients. J Cell Mol Med 23:2125–2135. https://doi.org/10.1111/jcmm.14124

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Fanchaouy M, Polakova E, Jung C, Ogrodnik J, Shirokova N, Niggli E (2009) Pathways of abnormal stress-induced Ca2+ influx into dystrophic mdx cardiomyocytes. Cell Calcium 46:114. https://doi.org/10.1016/J.CECA.2009.06.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Farah C, Michel LYM, Balligand J-L (2018) Nitric oxide signalling in cardiovascular health and disease. Nat Rev Cardiol 15:292–316. https://doi.org/10.1038/nrcardio.2017.224

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Fauconnier J, Thireau J, Reiken S, Cassan C, Richard S, Matecki S, Marks AR, Lacampagne A (2010) Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc Natl Acad Sci 107:1559–1564. https://doi.org/10.1073/PNAS.0908540107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Ferlini A, Sewry C, Melis MA, Mateddu A, Muntoni F (1999) X-linked dilated cardiomyopathy and the dystrophin gene. Neuromuscul Disord 9:339–346. https://doi.org/10.1016/S0960-8966(99)00015-2

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Ferrari G, Muntoni F, Tedesco FS (2020) Generation of two genomic-integration-free DMD iPSC lines with mutations affecting all dystrophin isoforms and potentially amenable to exon-skipping. Stem Cell Res 43:101688. https://doi.org/10.1016/j.scr.2019.101688

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Feyen DAM, McKeithan WL, Bruyneel AAN, Spiering S, Hörmann L, Ulmer B, Zhang H, Briganti F, Schweizer M, Hegyi B, Liao Z, Pölönen RP, Ginsburg KS, Lam CK, Serrano R, Wahlquist C, Kreymerman A, Vu M, Amatya PL, Behrens CS, Ranjbarvaziri S, Maas RGC, Greenhaw M, Bernstein D, Wu JC, Bers DM, Eschenhagen T, Metallo CM, Mercola M (2020) Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep 32. https://doi.org/10.1016/j.celrep.2020.107925

  49. 49.

    Finan A, Demion M, Sicard P, Guisiano M, Bideaux P, Monceaux K, Thireau J, Richard S (2019) Prolonged elevated levels of c-kit+ progenitor cells after a myocardial infarction by beta 2 adrenergic receptor priming. J Cell Physiol 234. https://doi.org/10.1002/JCP.28461

  50. 50.

    Florian A, Ludwig A, Rösch S, Yildiz H, Sechtem U, Yilmaz A (2014) Myocardial fibrosis imaging based on T1-mapping and extracellular volume fraction (ECV) measurement inmuscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement (LGE) imaging. Eur Heart J Cardiovasc Imaging 15:1004–1012. https://doi.org/10.1093/ehjci/jeu050

    Article  PubMed  Google Scholar 

  51. 51.

    Gallet R, Dawkins J, Valle J, Simsolo E, de Couto G, Middleton R, Tseliou E, Luthringer D, Kreke M, Smith RR, Marbán L, Ghaleh B, Marbán E (2017) Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J 38:201. https://doi.org/10.1093/EURHEARTJ/EHW240

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Gao QQ, McNally EM (2015) The dystrophin complex: structure, function, and implications for therapy. Compr Physiol 5:1223–1239. https://doi.org/10.1002/cphy.c140048

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Giacomelli E, Bellin M, Sala L, van Meer BJ, Tertoolen LGJ, Orlova VV, Mummery CL (2017) Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Dev 144:1008–1017. https://doi.org/10.1242/dev.143438

    CAS  Article  Google Scholar 

  54. 54.

    Gonzalez JP, Ramachandran J, Xie L-H, Contreras JE, Fraidenraich D (2015) Selective connexin43 inhibition prevents isoproterenol-induced arrhythmias and lethality in muscular dystrophy mice. Sci Rep 5:13490. https://doi.org/10.1038/srep13490

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Górecki D, Monaco A, Derry J, Walker A, Barnard E, Barnard P (1992) Expression of four alternative dystrophin transcripts in brain regions regulated by different promoters. Hum Mol Genet 1. https://doi.org/10.1093/HMG/1.7.505

  56. 56.

    Griggs RC, Miller JP, Greenberg CR, Fehlings DL, Pestronk A, Mendell JR, Moxley RT, King W, Kissel JT, Cwik V, Vanasse M, Florence JM, Pandya S, Dubow JS, Meyer JM, Meyer JM (2016) Efficacy and safety of deflazacort vs prednisone and placebo for Duchenne muscular dystrophy. Neurology 87:2123–2131. https://doi.org/10.1212/WNL.0000000000003217

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Hare JM (2003) Nitric oxide and excitation-contraction coupling. J Mol Cell Cardiol 35:719–729. https://doi.org/10.1016/s0022-2828(03)00143-3

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Hatzistergos KE, Takeuchi LM, Saur D, Seidler B, Dymecki SM, Mai JJ, White IA, Balkan W, Kanashiro-Takeuchi RM, Schally AV, Hare JM (2015) CKit+ cardiac progenitors of neural crest origin. Proc Natl Acad Sci U S A 112:13051–13056. https://doi.org/10.1073/pnas.1517201112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Heslop L, Morgan JE, Partridge TA (2000) Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. J Cell Sci 113:2299–2308

    CAS  Article  Google Scholar 

  60. 60.

    Heydemann A, Huber JM, Kakkar R, Wheeler MT, McNally EM (2004) Functional nitric oxide synthase mislocalization in cardiomyopathy. J Mol Cell Cardiol 36:213–223. https://doi.org/10.1016/J.YJMCC.2003.09.020

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Holder E, Maeda M, Bies RD (1996) Expression and regulation of the dystrophin Purkinje promoter in human skeletal muscle, heart, and brain. Hum Genet 97:232–239. https://doi.org/10.1007/BF02265272

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Hor KN, Taylor MD, Al-Khalidi HR, Cripe LH, Raman SV, Jefferies JL, O’Donnell R, Benson DW, Mazur W (2013) Prevalence and distribution of late gadolinium enhancement in a large population of patients with Duchenne muscular dystrophy: effect of age and left ventricular systolic function. J Cardiovasc Magn Reson 15:107. https://doi.org/10.1186/1532-429X-15-107

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Houang EM, Sham YY, Bates FS, Metzger JM (2018) Muscle membrane integrity in Duchenne muscular dystrophy: recent advances in copolymer-based muscle membrane stabilizers. Skelet Muscle 8. https://doi.org/10.1186/S13395-018-0177-7

  64. 64.

    Hu D, Linders A, Yamak A, Correia C, Kijlstra JD, Garakani A, Xiao L, Milan DJ, Van Der Meer P, Serra M, Alves PM, Domian IJ (2018) Metabolic maturation of human pluripotent stem cellderived cardiomyocytes by inhibition of HIF1α and LDHA. Circ Res 123:1066–1079. https://doi.org/10.1161/CIRCRESAHA.118.313249

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Imamura M, Ozawa E (1998) Differential expression of dystrophin isoforms and utrophin during dibutyryl-cAMP-induced morphological differentiation of rat brain astrocytes. Proc Natl Acad Sci U S A 95:6139–6144. https://doi.org/10.1073/pnas.95.11.6139

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Jelinkova S, Fojtik P, Kohutova A, Vilotic A, Marková L, Pesl M, Jurakova T, Kruta M, Vrbsky J, Gaillyova R, Valášková I, Frák I, Lacampagne A, Forte G, Dvorak P, Meli AC, Rotrekl V (2019) Dystrophin deficiency leads to genomic instability in human pluripotent stem cells via NO synthase-induced oxidative stress. Cells 8. https://doi.org/10.3390/cells8010053

  67. 67.

    Jelinkova S, Markova L, Pesl M, Valáškova I, Makaturová E, Jurikova L, Vondracek P, Lacampagne A, Dvorak P, Meli AC, Rotrekl V (2019) Generation of two Duchenne muscular dystrophy patient-specific induced pluripotent stem cell lines DMD02 and DMD03 (MUNIi001-A and MUNIi003-A). Stem Cell Res 40. https://doi.org/10.1016/j.scr.2019.101562

  68. 68.

    Jelinkova S, Vilotic A, Pribyl J, Aimond F, Salykin A, Acimovic I, Pesl M, Caluori G, Klimovic S, Urban T, Dobrovolna H, Soska V, Skladal P, Lacampagne A, Dvorak P, Meli AC, Rotrekl V (2020) DMD pluripotent stem cell derived cardiac cells recapitulate in vitro human cardiac pathophysiology. Front Bioeng Biotechnol 8. https://doi.org/10.3389/fbioe.2020.00535

  69. 69.

    Kakkar R, Lee RT (2010) Intramyocardial fibroblast myocyte communication. Circ Res 106:47–57

    CAS  Article  Google Scholar 

  70. 70.

    Kalra S, Montanaro F, Denning C (2016) Can human pluripotent stem cell-derived cardiomyocytes advance understanding of muscular dystrophies? J Neuromuscul Dis 3:309. https://doi.org/10.3233/JND-150133

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Kamdar F, Das S, Gong W, Klaassen Kamdar A, Meyers TA, Shah P, Ervasti JM, Townsend D, Kamp TJ, Wu JC, Garry MG, Zhang J, Garry DJ (2020) Stem cell–derived cardiomyocytes and beta-adrenergic receptor blockade in Duchenne muscular dystrophy cardiomyopathy. J Am Coll Cardiol 75:1159–1174. https://doi.org/10.1016/J.JACC.2019.12.066

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Kanisicak O, Khalil H, Ivey MJ, Karch J, Maliken BD, Correll RN, Brody MJ, Lin SCJ, Aronow BJ, Tallquist MD, Molkentin JD (2016) Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun 7. https://doi.org/10.1038/ncomms12260

  73. 73.

    Kaprielian RR, Stevenson S, Rothery SM, Cullen MJ, Severs NJ (2000) Distinct patterns of dystrophin organization in myocyte sarcolemma and transverse tubules of normal and diseased human myocardium. Circulation 101:2586–2594. https://doi.org/10.1161/01.CIR.101.22.2586

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murry CE (2020) Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol 17:341–359

    Article  Google Scholar 

  75. 75.

    Karras J, Schrock M, Batar B, Huebner K (2016) Fragile genes that are frequently altered in cancer: players not passengers. Cytogenet Genome Res 150. https://doi.org/10.1159/000455753

  76. 76.

    Kaspar RW, Allen HD, Ray WC, Alvarez CE, Kissel JT, Pestronk A, Weiss RB, Flanigan KM, Mendell JR, Montanaro F (2009) Analysis of dystrophin deletion mutations predicts age of cardiomyopathy onset in Becker muscular dystrophy. Circ Cardiovasc Genet 2:544. https://doi.org/10.1161/CIRCGENETICS.109.867242

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Kerr T, Sewry C, Robb S, Roberts R (2001) Long mutant dystrophins and variable phenotypes: evasion of nonsense-mediated decay? Hum Genet 109. https://doi.org/10.1007/S004390100598

  78. 78.

    Khairallah M, Khairallah RJ, Young ME, Allen BG, Gillis MA, Danialou G, Deschepper CF, Petrof BJ, Des Rosiers C (2008) Sildenafil and cardiomyocyte-specific cGMP signaling prevent cardiomyopathic changes associated with dystrophin deficiency. Proc Natl Acad Sci U S A 105:7028–7033. https://doi.org/10.1073/pnas.0710595105

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Kho C (2020) Can patient pluripotent stem cell–derived cardiomyocytes provide useful modeling on arrhythmias of DMD cardiomyopathy? J Am Coll Cardiol 75:1175–1177. https://doi.org/10.1016/J.JACC.2020.01.038

    Article  PubMed  Google Scholar 

  80. 80.

    Kishore R, Khan M (2016) More than tiny sacks: stem cell exosomes as cell-free modality for cardiac repair. Circ Res 118:330. https://doi.org/10.1161/CIRCRESAHA.115.307654

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T, Meng G, Müller CR, Lindlöf M, Kaariainen H, de la Chapelle A, Kiuru A, Savontaus M-L, Gilgenkrantz H, Récan D, Chelly J, Kaplan J-C, Covone AE, Archidiacono N, Romeo G, Liechti-Gallati S, Schneider V, Braga S, Moser H, Darras BT, Murphy P, Francke U, Chen JD, Morgan G, Denton M, Greenberg CR, Wrogemann K, Blonden LAJ, van Paassen HMB, van Ommen GJB, Kunkel LM (1989) The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45:498

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Kohl P, Gourdie RG (2014) Fibroblast-myocyte electrotonic coupling: does it occur in native cardiac tissue? J Mol Cell Cardiol 70:37–46

    CAS  Article  Google Scholar 

  83. 83.

    Kolanowski TJ, Busek M, Schubert M, Dmitrieva A, Binnewerg B, Pöche J, Fisher K, Schmieder F, Grünzner S, Hansen S, Richter A, El-Armouche A, Sonntag F, Guan K (2020) Enhanced structural maturation of human induced pluripotent stem cell-derived cardiomyocytes under a controlled microenvironment in a microfluidic system. Acta Biomater 102:273–286. https://doi.org/10.1016/j.actbio.2019.11.044

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Kornegay JN (2017) The golden retriever model of Duchenne muscular dystrophy. Skelet Muscle. https://doi.org/10.1186/s13395-017-0124-z

  85. 85.

    Kranias EG, Hajjar RJ (2012) Modulation of cardiac contractility by the phopholamban/SERCA2a regulatome. Circ Res 110:1646. https://doi.org/10.1161/CIRCRESAHA.111.259754

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    LaBarge W, Mattappally S, Kannappan R, Fast VG, Pretorius D, Berry JL, Zhang J (2019) Maturation of three-dimensional, hiPSC-derived cardiomyocyte spheroids utilizing cyclic, uniaxial stretch and electrical stimulation. PLoS One 14. https://doi.org/10.1371/journal.pone.0219442

  87. 87.

    Lai Y, Thomas GD, Yue Y, Yang HT, Li D, Long C, Judge L, Bostick B, Chamberlain JS, Terjung RL, Duan D (2009) Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 119:624–635. https://doi.org/10.1172/JCI36612

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Laing N (1993) Molecular genetics and genetic counselling for Duchenne/Becker muscular dystrophy. Mol Cell Biol Hum Dis Ser 3. https://doi.org/10.1007/978-94-011-1528-5_3

  89. 89.

    Lapidos KA, Kakkar R, McNally EM (2004) The dystrophin glycoprotein complex. Circ Res 94:1023–1031. https://doi.org/10.1161/01.RES.0000126574.61061.25

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Law ML, Cohen H, Martin AA, Angulski ABB, Metzger JM (2020) Dysregulation of calcium handling in duchenne muscular dystrophy-associated dilated cardiomyopathy: mechanisms and experimental therapeutic strategies. J Clin Med 9. https://doi.org/10.3390/JCM9020520

  91. 91.

    Li D, Yue Y, Lai Y, Hakim CH, Duan D (2011) Nitrosative stress elicited by nNOSμ delocalization inhibits muscle force in dystrophin-null mice. J Pathol 223:88. https://doi.org/10.1002/PATH.2799

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Li T-S, Cheng K, Lee S-T, Matsushita S, Davis D, Malliaras K, Zhang Y, Matsushita N, Smith RR, Marbán E (2010) Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells 28:2088–2098. https://doi.org/10.1002/stem.532

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Li Y, Zhang S, Zhang X, Li J, Ai X, Zhang L, Yu D, Ge S, Peng Y, Chen X (2014) Blunted cardiac beta-adrenergic response as an early indication of cardiac dysfunction in Duchenne muscular dystrophy. Cardiovasc Res 103:60. https://doi.org/10.1093/CVR/CVU119

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc 8:162–175. https://doi.org/10.1038/nprot.2012.150

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Liu T, Huang C, Li H, Wu F, Luo J, Lu W, Lan F (2018) A net-shaped multicellular formation facilitates the maturation of hPSC-derived cardiomyocytes through mechanical and electrophysiological stimuli. Aging (Albany NY) 10:532–548. https://doi.org/10.18632/aging.101411

    CAS  Article  Google Scholar 

  96. 96.

    Liu Y, Bai H, Guo F, Thai PN, Luo X, Zhang P, Yang C, Feng X, Zhu D, Guo J, Liang P, Xu Z, Yang H, Lu X (2020) PGC-1α activator ZLN005 promotes maturation of cardiomyocytes derived from human embryonic stem cells. Aging (Albany NY) 12:7411–7430. https://doi.org/10.18632/AGING.103088

    CAS  Article  Google Scholar 

  97. 97.

    Lorin C, Gueffier M, Bois P, Faivre JF, Cognard C, Sebille S (2013) Ultrastructural and functional alterations of EC coupling elements in mdx cardiomyocytes: an analysis from membrane surface to depth. Cell Biochem Biophys 66:723–736. https://doi.org/10.1007/s12013-013-9517-8

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Luce LN, Abbate M, Cotignola J, Giliberto F (2017) Non-myogenic tumors display altered expression of dystrophin (DMD) and a high frequency of genetic alterations. Oncotarget 8:145. https://doi.org/10.18632/ONCOTARGET.10426

    Article  PubMed  Google Scholar 

  99. 99.

    Lumeng CN, Hauser M, Brown V, Chamberlain JS (1999) Expression of the 71 kDa dystrophin isoform (Dp71) evaluated by gene targeting. Brain Res 830:174–178. https://doi.org/10.1016/S0006-8993(99)01201-9

    CAS  Article  PubMed  Google Scholar 

  100. 100.

    Macadangdang J, Guan X, Smith AST, Lucero R, Czerniecki S, Childers MK, Mack DL, Kim DH (2015) Nanopatterned human iPSC-based model of a dystrophin-null cardiomyopathic phenotype. Cell Mol Bioeng 8:320–332. https://doi.org/10.1007/s12195-015-0413-8

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    MacLennan D, Kranias E (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4. https://doi.org/10.1038/NRM1151

  102. 102.

    Mah J, Korngut L, Dykeman J, Day L, Pringsheim T, Jette N (2014) A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord 24. https://doi.org/10.1016/J.NMD.2014.03.008

  103. 103.

    Manzur AY, Kinali M, Muntoni F (2008) Update on the management of Duchenne muscular dystrophy. Arch Dis Child 93:986–990. https://doi.org/10.1136/adc.2007.118141

    CAS  Article  PubMed  Google Scholar 

  104. 104.

    Marijianowski MMH, Teeling P, Mann J, Becker AE (1995) Dilated cardiomyopathy is associated with an increase in the type I/type III collagen ratio: a quantitative assessment. J Am Coll Cardiol 25:1263–1272. https://doi.org/10.1016/0735-1097(94)00557-7

    CAS  Article  PubMed  Google Scholar 

  105. 105.

    Marshall JL, Crosbie-Watson RH (2013) Sarcospan: a small protein with large potential for Duchenne muscular dystrophy. Skelet Muscle 3(1). https://doi.org/10.1186/2044-5040-3-1

  106. 106.

    Marshall JL, Holmberg J, Chou E, Ocampo AC, Oh J, Lee J, Peter AK, Martin PT, Crosbie-Watson RH (2012) Sarcospan-dependent Akt activation is required for utrophin expression and muscle regeneration. J Cell Biol 197:1009–1027. https://doi.org/10.1083/jcb.201110032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Marshall JL, Oh J, Chou E, Lee JA, Holmberg J, Burkin DJ, Crosbie-Watson RH (2014) Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin. Hum Mol Genet 24:2011–2022. https://doi.org/10.1093/hmg/ddu615

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Masárová L, Mojica-Pisciotti ML, Panovský R, Kincl V, Pešl M, Opatřil L, Máchal J, Novák J, Holeček T, Juříková L, Feitová V (2021) Decreased Global Strains of LV in Asymptomatic Female Duchenne Muscular Dystrophy Gene Carriers Using CMR-FT. JACC Cardiovasc Imaging 14(5):1070–1072. https://doi.org/10.1016/j.jcmg.2020.09.016

  109. 109.

    Massouridès E, Polentes J, Mangeot P-E, Mournetas V, Nectoux J, Deburgrave N, Nusbaum P, Leturcq F, Popplewell L, Dickson G, Wein N, Flanigan KM, Peschanski M, Chelly J, Pinset C (2015) Dp412e: a novel human embryonic dystrophin isoform induced by BMP4 in early differentiated cells. Skelet Muscle. https://doi.org/10.1186/S13395-015-0062-6

  110. 110.

    Masubuchi N, Shidoh Y, Kondo S, Takatoh J, Hanaoka K (2013) Subcellular localization of dystrophin isoforms in cardiomyocytes and phenotypic analysis of dystrophin-deficient mice reveal cardiac myopathy is predominantly caused by a deficiency in full-length dystrophin. Exp Anim 62:211–217. https://doi.org/10.1538/expanim.62.211

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Mauduit O, Delcroix V, Lesluyes T, Pérot G, Lagarde P, Lartigue L, Blay J-Y, Chibon F (2019) Recurrent DMD deletions highlight specific role of Dp71 isoform in soft-tissue sarcomas. Cancers (Basel) 11. doi: https://doi.org/10.3390/CANCERS11070922

  112. 112.

    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495. https://doi.org/10.1083/jcb.9.2.493

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Mavrogeni S, Papavasiliou A, Giannakopoulou K, Markousis-Mavrogenis G, Pons MR, Karanasios E, Nikas I, Papadopoulos G, Kolovou G, Chrousos GP (2017) Oedema-fibrosis in Duchenne Muscular Dystrophy: Role of cardiovascular magnetic resonance imaging. Eur J Clin Invest 47(12). https://doi.org/10.1111/eci.12843

  114. 114.

    Mázala DAG, Novak JS, Hogarth MW, Nearing M, Adusumalli P, Tully CB, Habib NF, Gordish-Dressman H, Chen Y-W, Jaiswal JK, Partridge TA (2020) TGF-β–driven muscle degeneration and failed regeneration underlie disease onset in a DMD mouse model. JCI Insight 5. doi: https://doi.org/10.1172/JCI.INSIGHT.135703

  115. 115.

    McGreevy JW, Hakim CH, McIntosh MA, Duan D (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. DMM Dis Model Mech 8:195–213

    CAS  Article  Google Scholar 

  116. 116.

    Menendez-Montes I, Escobar B, Palacios B, Gómez MJ, Izquierdo-Garcia JL, Flores L, Jiménez-Borreguero LJ, Aragones J, Ruiz-Cabello J, Torres M, Martin-Puig S (2016) Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Dev Cell 39:724–739. https://doi.org/10.1016/j.devcel.2016.11.012

    CAS  Article  PubMed  Google Scholar 

  117. 117.

    Meng J, Counsell JR, Reza M, Laval SH, Danos O, Thrasher A, Lochmüller H, Muntoni F, Morgan JE (2016) Autologous skeletal muscle derived cells expressing a novel functional dystrophin provide a potential therapy for Duchenne muscular dystrophy. Sci Rep 6:19750. https://doi.org/10.1038/SREP19750

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Merrick D, Stadler LKJ, Larner D, Smith J (2009) Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation. Dis Model Mech 2:374. https://doi.org/10.1242/DMM.001008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. 119.

    van Mil A, Balk GM, Neef K, Buikema JW, Asselbergs FW, Wu SM, Doevendans PA, Sluijter JPG (2018) Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovasc Res 114:1828. https://doi.org/10.1093/CVR/CVY208

    Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Moat SJ, Bradley DM, Salmon R, Clarke A, Hartley L (2013) Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). Eur J Hum Genet 21:1049. https://doi.org/10.1038/EJHG.2012.301

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Muntoni F, Di L, Porcu M, Sinagra G, Mateddu A, Marrosu G, Ferlini A, Cau M, Milasin J, Melis MA, Marrosu MG, Cianchetti C, Sanna A, Falaschi A, Camerini F, Giacca M, Mestroni L (1997) Dystrophin gene abnormalities in two patients with idiopathic dilated cardiomyopathy. Heart 78:608. https://doi.org/10.1136/HRT.78.6.608

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Nachman MW (2004) Haldane and the first estimates of the human mutation rate. J Genet 83:231–233. https://doi.org/10.1007/BF02717891

    Article  PubMed  Google Scholar 

  123. 123.

    Nakamura A (2015) X-linked dilated cardiomyopathy: a cardiospecific phenotype of dystrophinopathy. Pharmaceuticals 8:303. https://doi.org/10.3390/PH8020303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Nakayama T, Sugano Y, Yokokawa T, Nagai T, Matsuyama TA, Ohta-Ogo K, Ikeda Y, Ishibashi-Ueda H, Nakatani T, Ohte N, Yasuda S, Anzai T (2017) Clinical impact of the presence of macrophages in endomyocardial biopsies of patients with dilated cardiomyopathy. Eur J Heart Fail 19:490–498. https://doi.org/10.1002/ejhf.767

    CAS  Article  PubMed  Google Scholar 

  125. 125.

    Nelson I, Stojkovic T, Allamand V, Leturcq F, Bécane HM, Babuty D, Toutain A, Béroud C, Richard P, Romero NB, Eymard B, Ben Yaou R, Bonne G (2015) Laminin α2 deficiency-related muscular dystrophy mimicking Emery-Dreifuss and collagen VI related diseases. J Neuromuscul Dis 2:229–240. https://doi.org/10.3233/JND-150093

    Article  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Niba ETE, Yamanaka R, Rani AQM, Awano H, Matsumoto M, Nishio H, Matsuo M (2017) DMD transcripts in CRL-2061 rhabdomyosarcoma cells show high levels of intron retention by intron-specific PCR amplification. Cancer Cell Int 17:58. https://doi.org/10.1186/s12935-017-0428-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. 127.

    De Palma C, Perrotta C, Pellegrino P, Clementi E, Cervia D (2014) Skeletal muscle homeostasis in duchenne muscular dystrophy: modulating autophagy as a promising therapeutic strategy. Front Aging Neurosci 6:188. https://doi.org/10.3389/fnagi.2014.00188

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Panovský R, Pešl M, Holeček T, Máchal J, Feitová V, Mrázová L, Haberlová J, Slabá A, Vít P, Stará V, Kincl V (2019) Cardiac profile of the Czech population of Duchenne muscular dystrophy patients: a cardiovascular magnetic resonance study with T1 mapping. Orphanet J Rare Dis 14:10. https://doi.org/10.1186/s13023-018-0986-0

    Article  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Pantaleo MA, Astolfi A, Urbini M, Fuligni F, Saponara M, Nannini M, Lolli C, Indio V, Santini D, Ercolani G, Brandi G, Pinna AD, Biasco G (2014) Dystrophin deregulation is associated with tumor progression in KIT/PDGFRA mutant gastrointestinal stromal tumors. Clin Sarcoma Res 4:9. https://doi.org/10.1186/2045-3329-4-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Parvatiyar MS, Brownstein AJ, Kanashiro-Takeuchi RM, Collado JR, Jones KMD, Gopal J, Hammond KG, Marshall JL, Ferrel A, Beedle AM, Chamberlain JS, Pinto JR, Crosbie RH (2019) Stabilization of the cardiac sarcolemma by sarcospan rescues DMD-associated cardiomyopathy. JCI Insight 4. https://doi.org/10.1172/JCI.INSIGHT.123855

  131. 131.

    Pellman J, Zhang J, Sheikh F (2016) Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: mechanisms and model systems. J Mol Cell Cardiol 94:22–31

    CAS  Article  Google Scholar 

  132. 132.

    Pesl M, Jelinkova S, Caluori G, Holicka M, Krejci J, Nemec P, Kohutova A, Zampachova V, Dvorak P, Rotrekl V (2020) Cardiovascular progenitor cells and tissue plasticity are reduced in a myocardium affected by Becker muscular dystrophy. Orphanet J Rare Dis 15:65. https://doi.org/10.1186/s13023-019-1257-4

    Article  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A 90:3710. https://doi.org/10.1073/PNAS.90.8.3710

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Piccini I, Rao J, Seebohm G, Greber B (2015) Human pluripotent stem cell-derived cardiomyocytes: genome-wide expression profiling of long-term in vitro maturation in comparison to human heart tissue. Genomics Data 4:69–72. https://doi.org/10.1016/j.gdata.2015.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Pietraszek-Gremplewicz K, Kozakowska M, Bronisz-Budzynska I, Ciesla M, Mucha O, Podkalicka P, Madej M, Glowniak U, Szade K, Stepniewski J, Jez M, Andrysiak K, Bukowska-Strakova K, Kaminska A, Kostera-Pruszczyk A, Jozkowicz A, Loboda A, Dulak J (2018) Heme oxygenase-1 influences satellite cells and progression of duchenne muscular dystrophy in mice. Antioxid Redox Signal 29. https://doi.org/10.1089/ARS.2017.7435

  136. 136.

    Piga D, Salani S, Magri F, Brusa R, Mauri E, Comi GP, Bresolin N, Corti S (2019) Human induced pluripotent stem cell models for the study and treatment of Duchenne and Becker muscular dystrophies. Ther Adv Neurol Disord 12:175628641983347. https://doi.org/10.1177/1756286419833478

    CAS  Article  Google Scholar 

  137. 137.

    Pioner JM, Guan X, Klaiman JM, Racca AW, Pabon L, Muskheli V, Macadangdang J, Ferrantini C, Hoopmann MR, Moritz RL, Kim D-H, Tesi C, Poggesi C, Murry CE, Childers MK, Mack DL, Regnier M (2019) Absence of full-length dystrophin impairs normal maturation and contraction of cardiomyocytes derived from human-induced pluripotent stem cells. Cardiovasc Res 116:368–382. https://doi.org/10.1093/cvr/cvz109

    CAS  Article  PubMed Central  Google Scholar 

  138. 138.

    Podkalicka P, Mucha O, Bronisz-Budzyńska I, Kozakowska M, Pietraszek-Gremplewicz K, Cetnarowska A, Głowniak-Kwitek U, Bukowska-Strakova K, Cieśla M, Kulecka M, Ostrowski J, Mikuła M, Potulska-Chromik A, Kostera-Pruszczyk A, Józkowicz A, Łoboda A, Dulak J (2020) Lack of miR-378 attenuates muscular dystrophy in mdx mice. JCI Insight 5. https://doi.org/10.1172/JCI.INSIGHT.135576

  139. 139.

    Puchalski MD, Williams RV, Askovich B, Sower CT, Hor KH, Su JT, Pack N, Dibella E, Gottliebson WM (2009) Late gadolinium enhancement: precursor to cardiomyopathy in Duchenne muscular dystrophy? Int J Cardiovasc Imaging 25:57–63. https://doi.org/10.1007/s10554-008-9352-y

    Article  PubMed  Google Scholar 

  140. 140.

    Quijano-Roy S, Sparks SE, Rutkowski A (1993) LAMA2-related muscular dystrophy. University of Washington, Seattle

    Google Scholar 

  141. 141.

    Ramachandran J, Schneider JS, Crassous P-A, Zheng R, Gonzalez JP, Xie L-H, Beuve A, Fraidenraich D, Peluffo RD (2013) Nitric oxide signaling pathway in duchenne muscular dystrophy mice: upregulation of l-arginine transporters. Biochem J 449:133. https://doi.org/10.1042/BJ20120787

    CAS  Article  PubMed  Google Scholar 

  142. 142.

    Rossbach HC, Lacson A, Grana NH, Barbosa JL, NH G, JL B, (1999) Duchenne muscular dystrophy and concomitant metastatic alveolar rhabdomyosarcoma. J Pediatr Hematol Oncol 21:528–530. https://doi.org/10.1097/00043426-199911000-00016

    CAS  Article  PubMed  Google Scholar 

  143. 143.

    Ruan JL, Tulloch NL, Razumova MV, Saiget M, Muskheli V, Pabon L, Reinecke H, Regnier M, Murry CE (2016) Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue. Circulation 134:1557–1567. https://doi.org/10.1161/CIRCULATIONAHA.114.014998

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Saccone V, Consalvi S, Giordani L, Mozzetta C, Barozzi I, Sandoná M, Ryan T, Rojas-Muñoz A, Madaro L, Fasanaro P, Borsellino G, De BM, Frigè G, Termanini A, Sun X, Rossant J, Bruneau BG, Mercola M, Minucci S, Puri PL (2014) HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes Dev 28:841. https://doi.org/10.1101/GAD.234468.113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Saha P, Sharma S, Korutla L, Datla SR, Shoja-Taheri F, Mishra R, Bigham GE, Sarkar M, Morales D, Bittle G, Gunasekaran M, Ambastha C, Arfat MY, Li D, Habertheuer A, Hu R, Platt MO, Yang P, Davis ME, Vallabhajosyula P, Kaushal S (2019) Circulating exosomes derived from transplanted progenitor cells aid the functional recovery of ischemic myocardium. Sci Transl Med 11. https://doi.org/10.1126/SCITRANSLMED.AAU1168

  146. 146.

    Samaras JJ, Abecasis B, Serra M, Ducci A, Micheletti M (2018) Impact of hydrodynamics on iPSC-derived cardiomyocyte differentiation processes. J Biotechnol 287:18–27. https://doi.org/10.1016/j.jbiotec.2018.07.028

    CAS  Article  PubMed  Google Scholar 

  147. 147.

    Sato M, Shiba N, Miyazaki D, Shiba Y, Echigoya Y, Yokota T, Takizawa H, Aoki Y, Takeda S, Nakamura A (2019) Amelioration of intracellular Ca2+ regulation by exon-45 skipping in Duchenne muscular dystrophy-induced pluripotent stem cell-derived cardiomyocytes. Biochem Biophys Res Commun 520:179–185. https://doi.org/10.1016/J.BBRC.2019.09.095

    CAS  Article  PubMed  Google Scholar 

  148. 148.

    Schmidt WM, Uddin MH, Dysek S, Moser-Thier K, Pirker C, Höger H, Ambros IM, Ambros PF, Berger W, Bittner RE (2011) DNA damage, somatic aneuploidy, and malignant sarcoma susceptibility in muscular dystrophies. PLoS Genet 7:e1002042. https://doi.org/10.1371/journal.pgen.1002042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Sharma S, Mishra R, Bigham GE, Wehman B, Khan MM, Xu H, Saha P, Goo YA, Datla SR, Chen L, Tulapurkar ME, Taylor BS, Yang P, Karathanasis S, Goodlett DR, Kaushal S (2017) A deep proteome analysis identifies the complete secretome as the functional unit of human cardiac progenitor cells. Circ Res 120:816–834. https://doi.org/10.1161/CIRCRESAHA.116.309782

    CAS  Article  PubMed  Google Scholar 

  150. 150.

    Shaw RM, Saffitz JE (2020) A role for connexin-43 in Duchenne muscular dystrophy cardiomyopathy. J Clin Invest 130:1608–1610

    CAS  Article  Google Scholar 

  151. 151.

    Shirokova N, Niggli E (2013) Cardiac phenotype of duchenne muscular dystrophy: insights from cellular studies. J Mol Cell Cardiol 58:217. https://doi.org/10.1016/J.YJMCC.2012.12.009

    CAS  Article  PubMed  Google Scholar 

  152. 152.

    Sicinski P, Geng Y, Ryder-Cook A, EA, Barnard E, Darlison M, Barnard P (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244. https://doi.org/10.1126/SCIENCE.2662404

  153. 153.

    Silbernagel N, Körner A, Balitzki J, Jaggy M, Bertels S, Richter B, Hippler M, Hellwig A, Hecker M, Bastmeyer M, Ullrich ND (2020) Shaping the heart: structural and functional maturation of iPSC-cardiomyocytes in 3D-micro-scaffolds. Biomaterials 227:119551. https://doi.org/10.1016/j.biomaterials.2019.119551

    CAS  Article  PubMed  Google Scholar 

  154. 154.

    Sinadinos A, Young CNJ, Al-Khalidi R, Teti A, Kalinski P, Mohamad S, Floriot L, Henry T, Tozzi G, Jiang T, Wurtz O, Lefebvre A, Shugay M, Tong J, Vaudry D, Arkle S, doRego JC, Górecki DC (2015) P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of Duchenne muscular dystrophy. PLoS Med 12:e1001888. https://doi.org/10.1371/journal.pmed.1001888

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Sleiman Y, Souidi M, Kumar R, Yang E, Jaffré F, Zhou T, Bernardin A, Reiken S, Cazorla O, Kajava A V., Moreau A, Pasquié JL, Marks AR, Lerman BB, Chen S, Cheung JW, Evans T, Lacampagne A, Meli AC (2020) Modeling polymorphic ventricular tachycardia at rest using patient-specific induced pluripotent stem cell-derived cardiomyocytes. EBioMedicine 60. https://doi.org/10.1016/j.ebiom.2020.103024

  156. 156.

    Spaltro G, Vigorelli V, Casalnuovo F, Spinelli P, Castiglioni E, Rovina D, Paganini S, Di Segni M, Nigro P, Gervasini C, Pompilio G, Gowran A (2017) Derivation of the Duchenne muscular dystrophy patient-derived induced pluripotent stem cell line lacking DMD exons 49 and 50 (CCMi001DMD-A-3, ∆ 49, ∆ 50). Stem Cell Res 25:128–131. https://doi.org/10.1016/j.scr.2017.10.018

    CAS  Article  PubMed  Google Scholar 

  157. 157.

    Spinazzola JM, Kunkel LM (2016) Pharmacological therapeutics targeting the secondary defects and downstream pathology of Duchenne muscular dystrophy. Expert Opin orphan drugs 4:1179–1194. https://doi.org/10.1080/21678707.2016.1240613

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Sreenivasan K, Ianni A, Künne C, Strilic B, Günther S, Perdiguero E, Krüger M, Spuler S, Offermanns S, Gómez-del Arco P, Redondo JM, Munoz-Canoves P, Kim J, Braun T (2020) Attenuated epigenetic suppression of muscle stem cell necroptosis is required for efficient regeneration of dystrophic muscles. Cell Rep 31:107652. https://doi.org/10.1016/J.CELREP.2020.107652

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Stehlíková K, Skálová D, Zídková J, Haberlová J, Voháňka S, Mazanec R, Mrázová L, Vondráček P, Ošlejšková H, Zámečník J, Honzík T, Zeman J, Magner M, Šišková D, Langová M, Gregor V, Godava M, Smolka V, Fajkusová L (2017) Muscular dystrophies and myopathies: the spectrum of mutated genes in the Czech Republic. Clin Genet 91. https://doi.org/10.1111/CGE.12839

  160. 160.

    Sultana N, Zhang L, Yan J, Chen J, Cai W, Razzaque S, Jeong D, Sheng W, Bu L, Xu M, Huang G-Y, Hajjar RJ, Zhou B, Moon A, Cai C-L (2015) Resident c-kit+ cells in the heart are not cardiac stem cells. Nat Commun 6. https://doi.org/10.1038/NCOMMS9701

  161. 161.

    Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, Navarrete EG, Hu S, Wang L, Lee A, Pavlovic A, Lin S, Chen R, Hajjar RJ, Snyder MP, Dolmetsch RE, Butte MJ, Ashley EA, Longaker MT, Robbins RC, Wu JC (2012) Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med 4:130ra47. https://doi.org/10.1126/scitranslmed.3003552

    Article  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Tadayoni R, Rendon A, Soria-Jasso L, Cisneros B (2012) Dystrophin Dp71: the smallest but multifunctional product of the Duchenne muscular dystrophy gene. Mol Neurobiol 45. https://doi.org/10.1007/S12035-011-8218-9

  163. 163.

    Tallini YN, Greene KS, Craven M, Spealman A, Breitbach M, Smith J, Fisher PJ, Steffey M, Hesse M, Doran RM, Woods A, Singh B, Yen A, Fleischmann BK, Kotlikoff MI (2009) c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci U S A 106:1808. https://doi.org/10.1073/PNAS.0808920106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Tan S, Tan S, Chen Z, Cheng K, Chen Z, Wang W, Wen Q, Zhang W (2016) Knocking down Dp71 expression in A549 cells reduces its malignancy in vivo and in vitro. Cancer Invest 34:16–25. https://doi.org/10.3109/07357907.2015.1084002

    CAS  Article  PubMed  Google Scholar 

  165. 165.

    Thomas GD, Sander M, Lau KS, Huang PL, Stull JT, Victor RG, Padre RC, Spencer MJ, Tidball JG, Stull JT (2000) Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proc Natl Acad Sci 97:13818–13823. https://doi.org/10.1073/pnas.95.25.15090

    Article  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Tsuda T, Fitzgerald KK (2017) Dystrophic cardiomyopathy: complex pathobiological processes to generate clinical phenotype. J Cardiovasc Dev Dis 4. https://doi.org/10.3390/JCDD4030014

  167. 167.

    Veerman CC, Kosmidis G, Mummery CL, Casini S, Verkerk AO, Bellin M (2015) Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem? Stem Cells Dev 24:1035–1052. https://doi.org/10.1089/scd.2014.0533

    CAS  Article  PubMed  Google Scholar 

  168. 168.

    Verkerk AO, Veerman CC, Zegers JG, Mengarelli I, Bezzina CR, Wilders R (2017) Patch-clamp recording from human induced pluripotent stemcell-derived cardiomyocytes: improving action potential characteristics throughdynamic clamp. Int J Mol Sci 18. https://doi.org/10.3390/ijms18091873

  169. 169.

    Villarreal-Silva M, Centeno-Cruz F, Suárez-Sánchez R, Garrido E, Cisneros B (2011) Knockdown of dystrophin Dp71 impairs PC12 cells cycle: localization in the spindle and cytokinesis structures implies a role for Dp71 in cell division. PLoS ONE 6:e23504. https://doi.org/10.1371/journal.pone.0023504

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Vry J, Gramsch K, Rodger S, Thompson R, Steffensen BF, Rahbek J, Doerken S, Tassoni A, Beytía M de los A, Guergueltcheva V, Chamova T, Tournev I, Kostera-Pruszczyk A, Kaminska A, Lusakowska A, Mrazova L, Pavlovska L, Strenkova J, Vondráček P, Garami M, Karcagi V, Herczegfalvi Á, Bushby K, Lochmüller H, Kirschner J (2016) European cross-sectional survey of current care practices for Duchenne muscular dystrophy reveals regional and age-dependent differences. J Neuromuscul Dis 3:517. https://doi.org/10.3233/JND-160185

    Article  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Wang Y, Marino-Enriquez A, Bennett RR, Zhu M, Shen Y, Eilers G, Lee J-C, Henze J, Fletcher BS, Gu Z, Fox EA, Antonescu CR, Fletcher CDM, Guo X, Raut CP, Demetri GD, van de Rijn M, Ordog T, Kunkel LM, Fletcher JA (2014) Dystrophin is a tumor suppressor in human cancers with myogenic programs. Nat Genet 46:601. https://doi.org/10.1038/NG.2974

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A (2018) 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater 70:48–56. https://doi.org/10.1016/j.actbio.2018.02.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Wu JC, Garg P, Yoshida Y, Yamanaka S, Gepstein L, Hulot JS, Knollmann BC, Schwartz PJ (2019) Towards precision medicine with human iPSCs for cardiac channelopathies. Circ Res 125:653–658. https://doi.org/10.1161/CIRCRESAHA.119.315209

    CAS  Article  PubMed  Google Scholar 

  174. 174.

    Yang X, Rodriguez ML, Leonard A, Sun L, Fischer KA, Wang Y, Ritterhoff J, Zhao L, Kolwicz SC, Pabon L, Reinecke H, Sniadecki NJ, Tian R, Ruohola-Baker H, Xu H, Murry CE (2019) Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Reports 13:657–668. https://doi.org/10.1016/j.stemcr.2019.08.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Yoshida S, Miyagawa S, Fukushima S, Kawamura T, Kashiyama N, Ohashi F, Toyofuku T, Toda K, Sawa Y (2018) Maturation of human induced pluripotent stem cell-derived cardiomyocytes by soluble factors from human mesenchymal stem cells. Mol Ther 26:2681–2695. https://doi.org/10.1016/j.ymthe.2018.08.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Zaruba M-M, Soonpaa M, Reuter S, Field LJ (2010) Cardiomyogenic potential of c-kit+ expressing cells derived from neonatal and adult mouse hearts. Circulation 121:1992. https://doi.org/10.1161/CIRCULATIONAHA.109.909093

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  177. 177.

    Zhang X, Ye L, Xu H, Zhou Q, Tan B, Yi Q, Yan L, Xie M, Zhang Y, Tian J, Zhu J (2021) NRF2 is required for structural and metabolic maturation of human induced pluripotent stem cell-derived ardiomyocytes. Stem Cell Res Ther 12. https://doi.org/10.1186/s13287-021-02264-2

Download references

Funding

This work was supported by the European Regional Development Fund—Project ENOCH (No. CZ.02.1.01/0.0/0.0/16_019/0000868). Martin Pesl was supported by the “Junior researcher 2020” scheme, Medical Faculty, Masaryk University. Barbora Svobodova was supported by funds from the Faculty of Medicine MU to a junior researcher (ROZV/23/LF10/2019). The French Muscular Dystrophy Association (AFM; project 16073, MNM2 2012, and 20225), South Moravian Centre for International Mobility (SoMoPro no. 2SGA2744), and the “Fondation Coeur et Recherche” have financially supported this work as well as the Ministry of Health of the Czech Republic (grant no. NU20-06–00156).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Albano C. Meli or Vladimir Rotrekl.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Recent Progress with hPSCs for Drug Discovery in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Svobodova, B., Jelinkova, S., Pesl, M. et al. Cellular pathology of the human heart in Duchenne muscular dystrophy (DMD): lessons learned from in vitro modeling. Pflugers Arch - Eur J Physiol 473, 1099–1115 (2021). https://doi.org/10.1007/s00424-021-02589-0

Download citation

Keywords

  • Cardiomyocyte
  • Contraction
  • Duchenne muscular dystrophy
  • In vitro modeling
  • Heart failure