Skip to main content

AMPK in the gut-liver-brain axis and its influence on OP rats in an HSHF intake and WTD rat model

Abstract

Obesogenic diets (ODs) can affect AMPK activation in several sites as the colon, liver, and hypothalamus. OD intake can impair the hypothalamic AMPK regulation of energy homeostasis. Despite consuming ODs, not all subjects have the propensity to develop or progress to obesity. The obesity propensity is more associated with energy intake than expenditure dysregulations and may have a link with AMPK activity. While the effects of ODs are studied widely, few evaluate the short-term effects of terminating OD intake. Withdrawing from OD (WTD) is thought to improve or reverse the damages caused by the intake. Therefore, here we applied an OD intake and WTD protocol aiming to evaluate AMPK protein content and phosphorylation in the colon, liver, and hypothalamus and their relationship with obesity propensity. To this end, male Wistar rats (60 days) received control or high-sugar/high-fat (HSHF) OD for 30 days. Half of the animals were OD-withdrawn and fed the control diet for 48 h. After intake, we found a reduction in AMPK phosphorylation in the hypothalamus and colon, and after WTD, we found an increase in its hepatic and hypothalamic phosphorylation. The decrease in colon pAMPK/AMPK could be linked with hypothalamic pAMPK/AMPK after HSHF intake, while the increase in hepatic pAMPK/AMPK could have prevented the increase in hypothalamic pAMPK/AMPK. In the obesity-prone rats, we found higher levels of hypothalamic and colon pAMPK/AMPK despite the higher body mass gain. Our results highlight the relevance in multi-organ investigations and animal phenotype evaluation when studying the energy metabolism regulations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

After publication, data will be available at https://doi.org/10.17632/vmmhh6dh3w.1

Code availability

Not applicable.

References

  1. 1.

    Allerton TD, Primeaux SD (2016) High-fat diet differentially regulates metabolic parameters in obesity-resistant S5B/Pl rats and obesity-prone Osborne-Mendel rats. Can J Physiol Pharmacol 94:206–215. https://doi.org/10.1139/cjpp-2015-0141

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Bassareo V, Di Chiara G (1997) Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci 17:851–861. https://doi.org/10.1523/jneurosci.17-02-00851.1997

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Bassareo V, De Luca MA, Di Chiara G (2002) Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. J Neurosci 22:4709–4719. https://doi.org/10.1523/jneurosci.22-11-04709.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Belegri E, Eggels L, Unmehopa UA, Mul JD, Boelen A, la Fleur SE (2018) The effects of overnight nutrient intake on hypothalamic inflammation in a free-choice diet-induced obesity rat model. Appetite 120:527–535. https://doi.org/10.1016/j.appet.2017.10.006

    Article  PubMed  Google Scholar 

  5. 5.

    Bortolin RC, Vargas AR, Gasparotto J, Chaves PR, Schnorr CE, Martinello KB, Silveira AK, Rabelo TK, Gelain DP, Moreira JCF (2018) A new animal diet based on human Western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption. Int J Obes 42:525–534. https://doi.org/10.1038/ijo.2017.225

    CAS  Article  Google Scholar 

  6. 6.

    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Carlin J, Hill-Smith TE, Lucki I, Reyes TM (2013) Reversal of dopamine system dysfunction in response to high-fat diet. Obesity 21:2513–2521. https://doi.org/10.1002/oby.20374

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Carlin JL, McKee SE, Hill-Smith T, Grissom NM, George R, Lucki I, Reyes TM (2016) Removal of high-fat diet after chronic exposure drives binge behavior and dopaminergic dysregulation in female mice. Neuroscience 326:170–179. https://doi.org/10.1016/j.neuroscience.2016.04.002

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Casagrande BP, Estadella D (2020) Withdrawing from obesogenic diets: benefits and barriers in the short- and long-term in rodent models. Am J Physiol Endocrinol Metab 319:E485–E493. https://doi.org/10.1152/ajpendo.00174.2020

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Casagrande BP, Gomes MFP, Moura EOC, Santos ACC, Kubota MC, Ribeiro DA, Pisani LP, Medeiros A, Estadella D (2019) Age-dependent hepatic alterations induced by a high-fat high-fructose diet. Inflamm Res 68:359–368. https://doi.org/10.1007/s00011-019-01223-1

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Casagrande BP, de Souza DV, Ribeiro DA, Medeiros A, Pisani LP, Estadella D (2020) Hepatic inflammation precedes steatosis and is mediated by visceral fat accumulation. J Endocrinol 245:369–380. https://doi.org/10.1530/JOE-20-0073

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Casagrande BP, Souza DV de, Pisani LP, Estadella D (2021) Dataset for “Hepatic inflammation precedes steatosis and is mediated by visceral fat accumulation.” Mendeley Data Version 1.https://doi.org/10.17632/g2wk65v7v9.1

  13. 13.

    Castro H, Pomar CA, Picó C, Sánchez J, Palou A (2015) Cafeteria diet overfeeding in young male rats impairs the adaptive response to fed/fasted conditions and increases adiposity independent of body weight. Int J Obes 39:430–437. https://doi.org/10.1038/ijo.2014.125

    CAS  Article  Google Scholar 

  14. 14.

    Cesar HC, Pisani LP (2017) Fatty-acid-mediated hypothalamic inflammation and epigenetic programming. J Nutr Biochem 42:1–5. https://doi.org/10.1016/j.jnutbio.2016.08.008

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Chiba S, Numakawa T, Ninomiya M, Richards MC, Wakabayashi C, Kunugi H (2012) Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 39:112–119. https://doi.org/10.1016/j.pnpbp.2012.05.018

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Coccurello R, Maccarrone M (2018) Hedonic eating and the “delicious circle”: from lipid-derived mediators to brain dopamine and back. Front Neurosci 12:1–20. https://doi.org/10.3389/fnins.2018.00271

    Article  Google Scholar 

  17. 17.

    Crescenzo R, Bianco F, Coppola P, Mazzoli A, Tussellino M, Carotenuto R, Liverini G, Iossa S (2014) Fructose supplementation worsens the deleterious effects of short-term high-fat feeding on hepatic steatosis and lipid metabolism in adult rats. Exp Physiol 99:1203–1213. https://doi.org/10.1113/expphysiol.2014.079632

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526. https://doi.org/10.1016/j.cmet.2011.02.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Duca FA, Katebzadeh S, Covasa M (2015) Impaired GLP-1 signaling contributes to reduced sensitivity to duodenal nutrients in obesity-prone rats during high-fat feeding. Obesity 23:2260–2268. https://doi.org/10.1002/oby.21231

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Espitia-Bautista E, Escobar C (2019) Fat rather than sugar diet leads to binge-type eating, anticipation, effort behavior and activation of the corticolimbic system. Nutr Neurosci 0:1–12. https://doi.org/10.1080/1028415X.2019.1651104

  21. 21.

    Estadella D, Oyama LM, Bueno AA, Habitante CA, Souza GI, Ribeiro EB, Motoyama CS, Oller do Nascimento CM (2011) A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats. Lipids Health Dis 10:168. https://doi.org/10.1186/1476-511X-10-168

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Giles ED, Jackman MR, MacLean PS (2016) Modeling diet-induced obesity with obesity-prone rats: implications for studies in females. Front Nutr 3:1–13. https://doi.org/10.3389/fnut.2016.00050

    Article  Google Scholar 

  23. 23.

    Gomes AC, Hoffmann C, Mota JF (2018) The human gut microbiota: metabolism and perspective in obesity. Gut Microbes 1–18.https://doi.org/10.1080/19490976.2018.1465157

  24. 24.

    Hamilton MK, Boudry G, Lemay DG, Raybould HE (2015) Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol 308:G840–G851. https://doi.org/10.1152/ajpgi.00029.2015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Huynh MKQ, Kinyua AW, Yang DJ, Kim KW (2016) Hypothalamic AMPK as a regulator of energy homeostasis. Neural Plast 2016.https://doi.org/10.1155/2016/2754078

  26. 26.

    Iemolo A, Blasio A, St Cyr SA, Jiang F, Rice KC, Sabino V, Cottone P (2013) CRF-CRF 1 receptor system in the central and basolateral nuclei of the amygdala differentially mediates excessive eating of palatable food. Neuropsychopharmacology 38:2456–2466. https://doi.org/10.1038/npp.2013.147

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Jackman MR, MacLean PS, Bessesen DH (2010) Energy expenditure in obesity-prone and obesity-resistant rats before and after the introduction of a high-fat diet. Am J Physiol Regul Integr Comp Physiol 299:1097–1105. https://doi.org/10.1152/ajpregu.00549.2009

    CAS  Article  Google Scholar 

  28. 28.

    Jamar G, Ribeiro DA, Pisani LP (2020) High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis. Crit Rev Food Sci Nutr 0:1–19.https://doi.org/10.1080/10408398.2020.1747046

  29. 29.

    Jeon SM (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48:e245. https://doi.org/10.1038/emm.2016.81

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Jiang S, Zhai H, Li D, Huang J, Zhang H, Li Z, Zhang W, Xu G (2016) AMPK-dependent regulation of GLP1 expression in L-like cells. J Mol Endocrinol 57:151–160. https://doi.org/10.1530/JME-16-0099

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the arrive guidelines for reporting animal research. PLoS Biol 8:6–10. https://doi.org/10.1371/journal.pbio.1000412

    CAS  Article  Google Scholar 

  32. 32.

    Lalanza JF, Caimari A, del Bas JM, Torregrosa D, Cigarroa I, Pallàs M, Capdevila L, Arola L, Escorihuela RM (2014) Effects of a post-weaning cafeteria diet in young rats: metabolic syndrome, reduced activity and low anxiety-like behaviour. PLoS ONE 9:e85049. https://doi.org/10.1371/journal.pone.0085049

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Liddle RA (2019) Neuropods. Cell Mol Gastroenterol Hepatol 7:739–747. https://doi.org/10.1016/j.jcmgh.2019.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Lin SC, Hardie DG (2018) AMPK: sensing glucose as well as cellular energy status. Cell Metab 27:299–313. https://doi.org/10.1016/j.cmet.2017.10.009

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Liu N, Wang Y, An AY, Banker C, Qian Y, O’Donnell JM (2020) Single housing-induced effects on cognitive impairment and depression-like behavior in male and female mice involve neuroplasticity-related signaling. Eur J Neurosci 52:2694–2704. https://doi.org/10.1111/ejn.14565

    Article  PubMed  Google Scholar 

  36. 36.

    López M (2018) Hypothalamic AMPK and energy balance. Eur J Clin Invest 48:e12996. https://doi.org/10.1111/eci.12996

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Maciejewska D, Skonieczna-Zydecka K, Lukomska A, Gutowska I, Dec K, Kupnicka P, Palma J, Pilutin A, Marlicz W, Stachowska E (2018) The short chain fatty acids and lipopolysaccharides status in sprague-dawley rats fed with high-fat and high-cholesterol diet. J Physiol Pharmacol 69:205–210. https://doi.org/10.26402/jpp.2018.2.05

    CAS  Article  Google Scholar 

  38. 38.

    Martire SI, Maniam J, South T, Holmes N, Westbrook RF, Morris MJ (2014) Extended exposure to a palatable cafeteria diet alters gene expression in brain regions implicated in reward, and withdrawal from this diet alters gene expression in brain regions associated with stress. Behav Brain Res 265:132–141. https://doi.org/10.1016/j.bbr.2014.02.027

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Mathew P, Thoppil D (2021) Hypoglycemia. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). Available from: https://www.ncbi.nlm.nih.gov/books/NBK534841/

  40. 40.

    Matias AM, Coelho PM, Marques VB, dos Santos L, de Assis ALEM, Nogueira BV, Lima-Leopoldo AP, Leopoldo AS (2020) Hypercaloric diet models do not develop heart failure, but the excess sucrose promotes contractility dysfunction. PLoS ONE 15:1–14. https://doi.org/10.1371/journal.pone.0228860

    CAS  Article  Google Scholar 

  41. 41.

    Matikainen-Ankney BA, Ali MA, Miyazaki NL, Fry SA, Licholai JA, Kravitz AV (2020) Weight loss after obesity is associated with increased food motivation and faster weight regain in mice. Obesity 28:851–856. https://doi.org/10.1002/oby.22758

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Møller LLV, Sylow L, Gøtzsche CR, Serup AK, Christiansen SH, Weikop P, Kiens B, Woldbye DPD, Richter EA (2016) Decreased spontaneous activity in AMPK α2 muscle specific kinase dead mice is not caused by changes in brain dopamine metabolism. Physiol Behav 164:300–305. https://doi.org/10.1016/j.physbeh.2016.06.010

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Montoya AK, Hayes AF (2017) Two-condition within-participant statistical mediation analysis: a path-analytic framework. Psychol Methods 22:6–27. https://doi.org/10.1037/met0000086

    Article  PubMed  Google Scholar 

  44. 44.

    Moore JB, Boesch C (2019) Getting energy balance right in an obesogenic world. Proc Nutr Soc 78:259–261. https://doi.org/10.1017/S0029665118002720

    Article  PubMed  Google Scholar 

  45. 45.

    Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443:289–295. https://doi.org/10.1038/nature05026

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Oh TS, Cho H, Cho JH, Yu SW, Kim EK (2016) Hypothalamic AMPK-induced autophagy increases food intake by regulating NPY and POMC expression. Autophagy 12:2009–2025. https://doi.org/10.1080/15548627.2016.1215382

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Pagliassotti MJ, Knobel SM, Shahrokhi KA, Manzo AM, Hill JO (1994) Time course of adaptation to a high-fat diet in obesity-resistant and obesity-prone rats. Am J Physiol Regul Integr Comp Physiol 267:R659–R664. https://doi.org/10.1152/ajpregu.1994.267.3.R659

    CAS  Article  Google Scholar 

  48. 48.

    Shang Y, Khafipour E, Derakhshani H, Sarna LK, Woo CW, Siow YL, Karmin O (2017) Short term high fat diet induces obesity-enhancing changes in mouse gut microbiota that are partially reversed by cessation of the high fat diet. Lipids 52:499–511. https://doi.org/10.1007/s11745-017-4253-2

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Sharma S, Fulton S (2013) Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes 37:382–389. https://doi.org/10.1038/ijo.2012.48

    CAS  Article  Google Scholar 

  50. 50.

    Sharma S, Fernandes MF, Fulton S (2013) Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal. Int J Obes 37:1183–1191. https://doi.org/10.1038/ijo.2012.197

    CAS  Article  Google Scholar 

  51. 51.

    Soto M, Chaumontet C, Mauduit CD, Fromentin G, Palme R, Tomé D, Even P (2016) Intermittent access to a sucrose solution impairs metabolism in obesity-prone but not obesity-resistant mice. Physiol Behav 154:175–183. https://doi.org/10.1016/j.physbeh.2015.11.012

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    South T, Westbrook F, Morris MJ (2012) Neurological and stress related effects of shifting obese rats from a palatable diet to chow and lean rats from chow to a palatable diet. Physiol Behav 105:1052–1057. https://doi.org/10.1016/j.physbeh.2011.11.019

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    South T, Holmes NM, Martire SI, Westbrook RF, Morris MJ (2014) Rats eat a cafeteria-style diet to excess but eat smaller amounts and less frequently when tested with chow. PLoS ONE 9:e93506. https://doi.org/10.1371/journal.pone.0093506

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Souza GFP, Solon C, Nascimento LF, De-Lima-Junior JC, Nogueira G, Moura R, Rocha GZ, Fioravante M, Bobbo V, Morari J, Razolli D, Araujo EP, Velloso LA (2016) Defective regulation of POMC precedes hypothalamic inflammation in diet-induced obesity. Sci Rep 6:1–9. https://doi.org/10.1038/srep29290

    CAS  Article  Google Scholar 

  55. 55.

    Sun H, Yan J, Sun B, Song L, Yan J (2017) Taste sensitivity to sucrose is lower in outbred Sprague-Dawley phenotypic obesity-prone rats than obesity-resistant rats. Biochem Biophys Res Commun 489:155–163. https://doi.org/10.1016/j.bbrc.2017.05.117

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Sun X, Yang Q, Rogers CJ, Du M, Zhu MJ (2017) AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression. Cell Death Differ 24:819–831. https://doi.org/10.1038/cdd.2017.14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Teske JA, Kotz CM (2009) Effect of acute and chronic caloric restriction and metabolic glucoprivation on spontaneous physical activity in obesity-prone and obesity-resistant rats. Am J Physiol Regul Integr Comp Physiol 297:176–184. https://doi.org/10.1152/ajpregu.90866.2008

    CAS  Article  Google Scholar 

  58. 58.

    WHO (2020) Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 30 Mar 2021

  59. 59.

    Williams RD, Dickey JW (1969) Physiology of the colon and rectum. Am J Surg 117:849–853. https://doi.org/10.1016/0002-9610(69)90074-9

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Winder WW, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol Endocrinol Metab 277:E1–E10. https://doi.org/10.1152/ajpendo.1999.277.1.E1

    CAS  Article  Google Scholar 

  61. 61.

    Xue B, Kahn BB (2006) AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol 574:73–83. https://doi.org/10.1113/jphysiol.2006.113217

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by the “Coordination for the Improvement of Higher Education Personnel” (CAPES Brazil—Financial Code 001) and by the “São Paulo Research Foundation” (FAPESP #2017/25420-3). LPP is a beneficiary of the “National Council for Scientific and Technological Development” (CNPq) productivity fellowship. BPC is a Ph.D. scholarship recipient from FAPESP (#2019/22511-3).

Author information

Affiliations

Authors

Contributions

BPC: Conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, roles/writing (original draft), and writing (review and editing).

LPP: Conceptualization, funding acquisition, investigation, methodology, resources, supervision, and writing (review and editing).

DE: Conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, supervision, and writing (review and editing).

Corresponding author

Correspondence to Debora Estadella.

Ethics declarations

Ethics approval

The present study was approved by the “Animal Use Ethics Committee” of the Federal University of São Paulo (no. 4641210318).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Casagrande, B.P., Pisani, L.P. & Estadella, D. AMPK in the gut-liver-brain axis and its influence on OP rats in an HSHF intake and WTD rat model. Pflugers Arch - Eur J Physiol 473, 1199–1211 (2021). https://doi.org/10.1007/s00424-021-02583-6

Download citation

Keywords

  • AMPK
  • Hypothalamus
  • Colon
  • Liver
  • Withdrawal